中国媒介生物学及控制杂志

• 论著 • 上一篇    下一篇

模拟小室内灭蝇灯击倒家蝇的数学模型

吴太平; 朱越; 徐月珍; 王海明   

  1. 武汉市卫生防疫站 邮编430022
  • 出版日期:1995-02-20 发布日期:1995-02-20

Mathematical Models of Knocrdown Response of Fly Electrocutor to Houseflies in Test Chamber

Wu Tai-ping;et al   

  1. Wuhan antiepidemic and hygience station Post Code: 430010
  • Online:1995-02-20 Published:1995-02-20

摘要: 在2×4×2(m3)的模拟小室内,分别用20、40、80、160只家蝇受试,灭蝇灯对家蝇的击倒率与时间对数均呈S型曲线关系,模型1:y=A+B1nt,(x=A+B1nt-5)能很好地描述击倒率机值及击倒率与时间的关系,其中直线回归的决定系数均在0.97以上;模型2:1n(1-D/D)=a+b1ni,D=(1+ea+b1nt)-1能有效地描述击倒率与时间的关系,其中直线回归的决定系数均在0.95以上。由模型计算的KT50、24h击倒率,可做为评价灭蝇灯灭效的指标。

关键词: 灭蝇灯, 数学模型, 击倒率, 时间

Abstract: In a 2m×4m×2m test Chamber,20、40、80、160 houseflies were tested respectively,the relationship of the knockdown rates of houseflies to fly electrocutor and the time logartihm presents "S" Pattern Model 1:Y=A+B1nt,(x=A+B1nt-5)can/appropriately describe the relationship between probit KD rates, KD rates and time.Model 2:1n(1-D/D)=a+b1ni,D=(1+ea+b1nt)-1 can effectively describe the relationship between KD rates and time. KT50 and 24 hours KD rates calculated from the models can be used as indexes for fly electrocutor efficiency estimate.