中国媒介生物学及控制杂志 ›› 2009, Vol. 20 ›› Issue (2): 129-132.

• 论著 • 上一篇    下一篇

鼠密度与气象因素的响应面分析研究

吴海磊1,2, 钱吉生2, 阮治安2, 黄立业2, 张纯2, 陈瑞2,吕永生2, 许琳2,刘烈刚1   

  1. 1 华中科技大学同济医学院公共卫生学院(湖北 武汉 430030); 2 南京出入境检验检疫局卫生与食品检验监督处(南京 210001)
  • 收稿日期:2008-10-07 出版日期:2009-04-20 发布日期:2009-04-20
  • 通讯作者: 刘烈刚,Email:liuliegang@mails.tjmu.edu.cn
  • 作者简介:吴海磊(1973-),男,江苏沭阳人,博士研究生,副主任医师,从事口岸传染病和媒介生物防制工作。

Study on the relationship of meteorological factors and rats density by Response surface methodology

WU Hai-Lei, QIAN Ji-Sheng, RUAN Zhi-An, HUANG Li-Ye, ZHANG Chun, CHEN Rui, LV Yong-Sheng, HU Lin, LIU Lie-Gang   

  1. 1 School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; 2 Department of Health and Food,Nanjing Entry?Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 210001, China
  • Received:2008-10-07 Online:2009-04-20 Published:2009-04-20
  • Contact: LIU Lie-gang, Email:liuliegang@mails.tjmu.edu.cn

摘要:

  【摘要】 目的 在相关回归分析的基础上,运用响应面模型分析对影响鼠密度的复合气象因素进行研究。方法 连续监测鼠密度与7种气象因子资料,进行相关和线性回归分析,建立气象因子对鼠密度影响的响应面模型。结果 线性回归分析表明月平均最低气温、日照时间、降雨量对回归方程的贡献最大,线性回归方程有统计学意义(P<0.030),复相关系数为0.716。响应面分析表明月平均最低气温(P=0.003)、降雨量的二次方(P=0.059)、月平均最低气温与日照的交互作用(P=0.027)是影响鼠密度的气象因素,响应面模型有统计学意义(P<0.013),复相关系数为0.761。结论 响应面分析法能够较好地应用于气象因子对鼠密度的影响,建立的响应面模型优于多元线性回归,气象因素对鼠密度的影响是多因素及交互作用的结果。

关键词: 鼠类, 群体动态, 气象因素, 响应面分析法

Abstract:

  【Abstract】 Objective To study the effect of meteorological factors on rats density by Response surface methodology(RSM) based on correlation and regression analysis. Methods The meteorological factors and rats density were monitored continuously. A response surface model was made by the correlation and regression analysis of them. Results Linear regression analysis(P<0.030)indicated that monthly average minimum temperature, sunshine time and precipitation were the main influence factors, and the multiple correlation coefficient was 0.716. However, RSM suggested that monthly average minimum temperature(P=0.003), precipitation square(P=0.059), interaction of monthly minimum temperature and sunshine(P=0.027) affected mostly the density of rats, and its multiple correlation coefficient was 0.761. Conclusion The effect of meteorological factors on the rats density could be evaluated by RSM model.  This model was superior to linear regression model. The effect of meteorological factors on rats density was resulted from multiple factors and their interaction.

Key words: Rats, Population dynamics, Meteorological factors, Response surface methodology

中图分类号: