中国媒介生物学及控制杂志 ›› 2025, Vol. 36 ›› Issue (1): 129-136.DOI: 10.11853/j.issn.1003.8280.2025.01.022
张健1,2, 郭云海1, 开振鹏2, 蒋天哥3, 张仪1,3
收稿日期:
2024-04-12
出版日期:
2025-02-20
发布日期:
2025-03-05
通讯作者:
张仪,E-mail:zhangyi@nipd.chinacdc.cn
作者简介:
张健,女,在读硕士,主要从事生态学与病媒控制研究,E-mail: 862112019@qq.com
基金资助:
ZHANG Jian1,2, GUO Yun-hai1, KAI Zhen-peng2, JIANG Tian-ge3, ZHANG Yi1,3
Received:
2024-04-12
Online:
2025-02-20
Published:
2025-03-05
Supported by:
摘要: RNA干扰(RNAi)是一种高效的分子调控手段,通过特异性地降低靶标基因的表达水平,对害虫的生物学特性产生影响。蚊、蜱、淡水螺和螨是传播多种致命疾病的重要媒介生物,RNAi技术在媒介生物防治的应用显示出了巨大的潜力。该文综述了RNAi技术在蚊、蜱、淡水螺和螨类等基因功能研究中的应用,尤其是在影响其繁殖能力、生长发育、神经和代谢功能以及免疫和病毒传播等基因方面的应用。此外,文章还探讨了影响RNAi效率的多种因素,包括双链RNA(dsRNA)的长度、浓度、给药途径和转染方法等,讨论了RNAi技术在实际应用中面临的挑战,并展望了RNAi技术在媒介生物防治中的潜力,旨在为未来的媒介生物防制管理策略提供新的途径和方法。
中图分类号:
张健, 郭云海, 开振鹏, 蒋天哥, 张仪. RNA干扰技术应用于媒介生物防治的研究进展[J]. 中国媒介生物学及控制杂志, 2025, 36(1): 129-136.
ZHANG Jian, GUO Yun-hai, KAI Zhen-peng, JIANG Tian-ge, ZHANG Yi. Research progress of RNA interference technology applied to vector control[J]. Chinese Journal of Vector Biology and Control, 2025, 36(1): 129-136.
[1] Fire A, Xu SQ, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669):806-811. DOI:10.1038/35888. [2] Tabara H, Grishok A, Mello CC. RNAi in C. elegans:Soaking in the genome sequence[J]. Science, 1998, 282(5388):430-431. DOI:10.1126/science.282.5388.430. [3] Timmons L, Fire A. Specific interference by ingested dsRNA[J]. Nature, 1998, 395(6705):854. DOI:10.1038/27579. [4] Cuccato G, Polynikis A, Siciliano V, et al. Modeling RNA interference in mammalian cells[J]. BMC Syst Biol, 2011, 5:19. DOI:10.1186/1752-0509-5-19. [5] Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference[J]. Nature, 2009, 457(7228):405-412. DOI:10.1038/nature07755. [6] Huvenne H, Smagghe G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control:A review[J]. J Insect Physiol, 2010, 56(3):227-235. DOI:10.1016/j.jinsphys.2009.10.004. [7] Chen WW, Zhang X, Fan YY, et al. A genetic network for systemic RNA silencing in plants[J]. Plant Physiol, 2018, 176(4):2700-2719. DOI:10.1104/pp.17.01828. [8] Vélez AM, Fishilevich E. The mysteries of insect RNAi:A focus on dsRNA uptake and transport[J]. Pestic Biochem Physiol, 2018, 151:25-31. DOI:10.1016/j.pestbp.2018.08.005. [9] Hunter CP, Winston WM, Molodowitch C, et al. Systemic RNAi in Caenorhabditis elegans[J]. Cold Spring Harb Symp Quant Biol, 2006, 71:95-100. DOI:10.1101/sqb.2006.71.060. [10] Key messages from World Health Day 2014[J]. Chin J Ctrl Endem Dis, 2014, 29(2):108. (in Chinese) 2014年世界卫生日主要信息[J]. 中国地方病防治杂志, 2014, 29(2):108. [11] Yan JJ, Nauen R, Reitz S, et al. The new kid on the block in insect pest management:Sprayable RNAi goes commercial[J]. Sci China Life Sci, 2024, 67(8):1766-1768. DOI:10.1007/s11427-024-2612-1. [12] Agarwal A, Sarma DK, Chaurasia D, et al. Novel molecular approaches to combat vectors and vector-borne viruses:Special focus on RNA interference (RNAi) mechanisms[J]. Acta Trop, 2022, 233:106539. DOI:10.1016/j.actatropica.2022.106539. [13] Munawar K, Alahmed AM, Khalil SMS. Delivery methods for RNAi in mosquito larvae[J]. J Insect Sci, 2020, 20(4):12. DOI:10.1093/jisesa/ieaa074. [14] Wang H, Liu J, Kailimai A, et al. Effects of angiotensin-converting enzyme on reproduction of Culex pipiens pallens[J]. Chin J Schistosomiasis Control, 2023, 35(3):251-257. DOI:10.16250/j.32.1374.2023031. (in Chinese) 王欢, 刘进, 开力买·艾尼, 等. 血管紧张素转换酶对淡色库蚊生殖的影响[J]. 中国血吸虫病防治杂志, 2023, 35(3):251-257. DOI:10.16250/j.32.1374.2023031. [15] Tang Y, Jiang LL, Huang YQ, et al. Role of arylalkylamine N‐acetyltransferase 7 in reproduction and limb pigmentation of Aedes aegypti[J]. Insect Mol Biol, 2024, 33(6):678-686. DOI:10.1111/imb.12930. [16] Huang YQ, Chen ZH, Lan JQ, et al. MDR49 coding for both P-glycoprotein and TMOF transporter functions in ivermectin resistance, trypsin activity inhibition, and fertility in the yellow fever mosquito, Aedes aegypti[J]. Pestic Biochem Physiol, 2024, 201:105899. DOI:10.1016/j.pestbp.2024.105899. [17] Sajadi F, Paluzzi JPV. Molecular characterization, localization, and physiological roles of ITP and ITP-L in the mosquito, Aedes aegypti[J]. Front Insect Sci, 2024, 4:1374325. DOI:10.3389/finsc.2024.1374325. [18] Geng DQ, Wang XL, Lyu XY, et al. Ecdysone-controlled nuclear receptor ERR regulates metabolic homeostasis in the disease vector mosquito Aedes aegypti[J]. PLoS Genet, 2024, 20(3):e1011196. DOI:10.1371/journal.pgen.1011196. [19] Lamsal M, Luker HA, Pinch M, et al. RNAi-mediated knockdown of acidic ribosomal stalk protein P1 arrests egg development in adult female yellow fever mosquitoes, Aedes aegypti[J]. Insects, 2024, 15(2):84. DOI:10.3390/insects15020084. [20] Zhang C, Ding YJ, Zhou M, et al. RNAi-mediated CHS-2 silencing affects the synthesis of chitin and the formation of the peritrophic membrane in the midgut of Aedes albopictus larvae[J]. Parasit Vectors, 2023, 16(1):259. DOI:10.1186/s13071-023-05865-3. [21] Mehmood N, Hassan A, Zhong XS, et al. Entomopathogenic fungal infection following immune gene silencing decreased behavioral and physiological fitness in Aedes aegypti mosquitoes[J]. Pestic Biochem Physiol, 2023, 195:105535. DOI:10.1016/j.pestbp.2023.105535. [22] Chen J, Wu YC, Chen JK, et al. Roles of a newly lethal cuticular structural protein, AaCPR100A, and its upstream interaction protein, G12-like, in Aedes aegypti[J]. Int J Biol Macromol, 2024, 268:131704. DOI:10.1016/j.ijbiomac.2024.131704. [23] Letinić BD, Dahan-Moss Y, Koekemoer LL. Characterising the effect of Akirin knockdown on Anopheles arabiensis (Diptera:Culicidae) reproduction and survival, using RNA-mediated interference[J]. PLoS One, 2020, 15(2):e0228576. DOI:10.1371/journal.pone.0228576. [24] Ding JJ, Cui CL, Wang GD, et al. Engineered gut symbiotic bacterium-mediated RNAi for effective control of Anopheles mosquito larvae[J]. Microbiol Spectr, 2023, 11(4):e0166623. DOI:10.1128/spectrum.01666-23. [25] Mysore K, Njoroge TM, Stewart ATM, et al. Characterization of a novel RNAi yeast insecticide that silences mosquito 5-HT1 receptor genes[J]. Sci Rep, 2023, 13(1):22511. DOI:10.1038/s41598-023-49799-3. [26] Stewart ATM, Mysore K, Njoroge TM, et al. Demonstration of RNAi yeast insecticide activity in semi-field larvicide and attractive targeted sugar bait trials conducted on Aedes and Culex mosquitoes[J]. Insects, 2023, 14(12):950. DOI:10.3390/INSECTS14120950. [27] Durant AC, Donini A. Ammonia transport in the excretory system of mosquito larvae (Aedes aegypti):Rh protein expression and the transcriptome of the rectum[J]. Comp Biochem Physiol A Mol Integr Physiol, 2024, 294:111649. DOI:10.1016/j.cbpa.2024.111649. [28] da Silva JN, Conceição CC, de Brito GCR, et al. Immunometabolic crosstalk in Aedes fluviatilis and Wolbachia pipientis symbiosis[J]. J Biol Chem, 2024, 300(6):107272. DOI:10.1016/j.jbc.2024.107272. [29] Lu P, Sun Q, Fu P, et al. Wolbachia inhibits binding of dengue and Zika viruses to mosquito cells[J]. Front Microbiol, 2020, 11:1750. DOI:10.3389/fmicb.2020.01750. [30] Samantsidis GR, Kwon H, Wendland M, et al. TNF signaling mediates cellular immune function and promotes malaria parasite killing in the mosquito Anopheles gambiae[Preprint]. bioRxiv, (2024-05-05)[2024-07-01]. DOI:https://doi.org/10.1101/2024.05.02.592209. [31] Trammell CE, Ramirez G, Sanchez-Vargas I, et al. Coupled small molecules target RNA interference and JAK/STAT signaling to reduce Zika virus infection in Aedes aegypti[J]. PLoS Pathog, 2022, 18(4):e1010411. DOI:10.1371/journal.ppat.1010411. [32] Muddassar H, Chen ML, Zhang T, et al. Short communication:Mosquito histone 2A protein facilitate Japanese encephalitis virus infection in the mosquito[J]. Vector Borne Zoonotic Dis, 2024, 24(4):245-248. DOI:10.1089/vbz.2023.0081. [33] Billingsley PF, George KI, Eappen AG, et al. Transient knockdown of Anopheles stephensi LRIM1 using RNAi increases Plasmodium falciparum sporozoite salivary gland infections[J]. Malar J, 2021, 20(1):284. DOI:10.1186/s12936-021-03818-8. [34] de la Fuente J, Kocan KM. The impact of RNA interference in tick research[J]. Pathogens, 2022, 11(8):827. DOI:10.3390/pathogens11080827. [35] Zhao Y, Liu L, Liu JB, et al. Cloning, expression, and function of ferritins in the tick Haemaphysalis flava[J]. Ticks Tick Borne Dis, 2022, 13(2):101892. DOI:10.1016/j.ttbdis.2021.101892. [36] Qiu ZX, Li Y, Li MM, et al. Investigation of three enzymes and their roles in the embryonic development of parthenogenetic Haemaphysalis longicornis[J]. Parasit Vectors, 2020, 13(1):46. DOI:10.1186/s13071-020-3916-7. [37] Gao ZH, Zheng PJ, Wang K, et al. The molecular and functional characterization of ferritins in the hard tick Hyalomma rufipes[J]. Parasit Vectors, 2022, 15(1):368. DOI:10.1186/s13071-022-05515-0. [38] Oleaga A, González-Pérez S, Peréz-Sánchez R. First molecular and functional characterisation of ferritin 2 proteins from Ornithodoros argasid ticks[J]. Vet Parasitol, 2022, 304:109684. DOI:10.1016/j.vetpar.2022.109684. [39] Xu ZM, Yan YJ, Zhang HS, et al. A serpin from the tick Rhipicephalus haemaphysaloides:Involvement in vitellogenesis[J]. Vet Parasitol, 2020, 279:109064. DOI:10.1016/j.vetpar.2020.109064. [40] Rahman MK, Kim B, You M. Molecular cloning, expression and impact of ribosomal protein S-27 silencing in Haemaphysalis longicornis (Acari:Ixodidae)[J]. Exp Parasitol, 2020, 209:107829. DOI:10.1016/j.exppara.2019.107829. [41] Zheng WQ, Umemiya-Shirafuji R, Chen SG, et al. Identification of Haemaphysalis longicornis genes differentially expressed in response to Babesia microti infection[J]. Pathogens, 2020, 9(5):378. DOI:10.3390/pathogens9050378. [42] Kozelková T, Doležel D, Grunclová L, et al. Functional characterization of the insulin signaling pathway in the hard tick Ixodes ricinus[J]. Ticks Tick Borne Dis, 2021, 12(4):101694. DOI:10.1016/j.ttbdis.2021.101694. [43] Tuerdi M, Hu SM, Wang YN, et al. Engorgement of Rhipicephalus haemaphysaloides ticks blocked by silencing a protein inhibitor of apoptosis[J]. Exp Appl Acarol, 2021, 84(3):623-636. DOI:10.1007/s10493-021-00637-z. [44] Kotál J, Polderdijk SGI, Langhansová H, et al. Ixodes ricinus salivary serpin iripin-8 inhibits the intrinsic pathway of coagulation and complement[J]. Int J Mol Sci, 2021, 22(17):9480. DOI:10.3390/ijms22179480. [45] Lu JL, Wang K, Gao ZH, et al. Doenitin-1:A novel kunitz family protein with versatile functions during feeding and reproduction of the tick Haemaphysalis doenitzi[J]. Front Vet Sci, 2022, 9:872244. DOI:10.3389/fvets.2022.872244. [46] Tang XT, Cao YG, Arora G, et al. The Lyme disease agent co-opts adiponectin receptor-mediated signaling in its arthropod vector[J]. Elife, 2021, 10:e72568. DOI:10.7554/eLife.72568. [47] Yang XL, Koči J, Smith AA, et al. A novel tick protein supports integrity of gut peritrophic matrix impacting existence of gut microbiome and Lyme disease pathogens[J]. Cell Microbiol, 2021, 23(2):e13275. DOI:10.1111/cmi.13275. [48] Gray JS, Estrada-Peña A, Zintl A. Vectors of babesiosis[J]. Annu Rev Entomol, 2019, 64:149-165. DOI:10.1146/annurev-ento-011118-111932. [49] Lyu B, Li JJ, Niemeyer B, et al. Identification, structural modeling, gene expression analysis and RNAi effect of putative phospholipase A2 in the lone star tick Amblyomma americanum[J]. Ticks Tick Borne Dis, 2024, 15(1):102256. DOI:10.1016/j.ttbdis.2023.102256. [50] Feng TT, Tong H, Zhang QQ, et al. Targeting Haemaphysalis longicornis serpin to prevent tick feeding and pathogen transmission[J]. Insect Sci, 2024, 31(3):694-706. DOI:10.1111/1744-7917.13260. [51] Agwunobi DO, Wang NM, Huang L, et al. Phosphoproteomic analysis of Haemaphysalis longicornis saliva reveals the influential contributions of phosphoproteins to blood-feeding success[J]. Front Cell Infect Microbiol, 2022, 11:769026. DOI:10.3389/fcimb.2021.769026. [52] Lu XJ, Zhang ZP, Yuan DQ, et al. The ecdysteroid receptor regulates salivary gland degeneration through apoptosis in Rhipicephalus haemaphysaloides[J]. Parasit Vectors, 2021, 14(1):612. DOI:10.1186/s13071-021-05052-2. [53] Adema CM, Hillier LW, Jones CS, et al. Whole genome analysis of a schistosomiasis-transmitting freshwater snail[J]. Nat Commun, 2017, 8:15451. DOI:10.1038/ncomms15451. [54] Jiang YG, Loker ES, Zhang SM. In vivo and in vitro knockdown of FREP2 gene expression in the snail Biomphalaria glabrata using RNA interference[J]. Dev Comp Immunol, 2006, 30(10):855-866. DOI:10.1016/j.dci.2005.12.004. [55] Portet A, Galinier R, Lassalle D, et al. Hemocyte siRNA uptake is increased by 5' cholesterol-TEG addition in Biomphalaria glabrata, snail vector of schistosome[J]. PeerJ, 2021, 9:e10895. DOI:10.7717/peerj.10895. [56] Knight M, Miller A, Liu YJ, et al. Polyethyleneimine (PEI) mediated siRNA gene silencing in the Schistosoma mansoni snail host, Biomphalaria glabrata[J]. PLoS Negl Trop Dis, 2011, 5(7):e1212. DOI:10.1371/journal.pntd.0001212. [57] Xu S, Zhang YWQ, Habib MR, et al. Inhibition of alternative oxidase disrupts the development and oviposition of Biomphalaria glabrata snails[J]. Parasit Vectors, 2023, 16(1):73. DOI:10.1186/s13071-022-05642-8. [58] Yang CP, Wang YM, Ma YQ, et al. Research on the molluscicidal activity and molecular mechanisms of arecoline against Pomacea canaliculata[J]. Ecotoxicol Environ Saf, 2022, 246:114198. DOI:10.1016/j.ecoenv.2022.114198. [59] Yang CP, Ma YQ, Wang B, et al. Identification and functional verification of the target protein of pedunsaponin A in the gills of Pomacea canaliculata[J]. Pest Manag Sci, 2022, 78(3):947-954. DOI:10.1002/ps.6704. [60] Yu WC, Zhang BL, Song HC, et al. Preliminary investigation demonstrating the GHITM gene probably involved in apoptosis and growth of the golden apple snail (Pomacea canaliculata)[J]. BMC Genomics, 2020, 21(1):19. DOI:10.1186/s12864-019-6434-2. [61] Chen HB, Zhou Y, Zhang M, et al. Molluscicidal effect mechanism study on metaldehyde to Pomacea canaliculate at low temperature[J]. Pest Manag Sci, 2024, 80(7):3650-3664. DOI:10.1002/ps.8069. [62] Xu XL, Wang CW, Liu Q, et al. Two ferritins from Dermanyssus gallinae:Characterization and in vivo assessment as protective antigens[J]. Pest Manag Sci, 2022, 78(2):561-571. DOI:10.1002/ps.6664. [63] Chen W, Bartley K, Nunn F, et al. RNAi gene knockdown in the poultry red mite, Dermanyssus gallinae (De Geer 1778), a tool for functional genomics[J]. Parasit Vectors, 2021, 14(1):57. DOI:10.1186/s13071-020-04562-9. [64] Nganso BT, Mani K, Eliash N, et al. Towards disrupting Varroa–honey bee chemosensing:A focus on a Niemann‐Pick type C2 transcript[J]. Insect Mol Biol, 2021, 30(5):519-531. DOI:10.1111/imb.12722. [65] Yang R, Niu DL, Zhao YE, et al. Function of heat shock protein 70 in the thermal stress response of Dermatophagoides farinae and establishment of an RNA interference method[J]. Gene, 2019, 705:82-89. DOI:10.1016/j.gene.2019.04.032. [66] Niu DL, Zhao YE, Gong XJ, et al. Stress response and silencing verification of heat shock proteins in Dermatophagoides farinae under temperature stress[J]. Int J Biol Macromol, 2020, 144:351-361. DOI:10.1016/j.ijbiomac.2019.12.014. [67] Das J, Kumar R, Shah V, et al. Simple cost‐effective larval injection method for dsRNA delivery to induce RNAi response in Helicoverpa armigera (Hübner)[J]. J Appl Entomol, 2023, 147(4):289-298. DOI:10.1111/jen.13100. [68] Wang YB, Zhang H, Li HC, et al. Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control[J]. PLoS One, 2011, 6(4):e18644. DOI:10.1371/journal.pone.0018644. [69] Arshad F, Sharma A, Lu C, et al. RNAi by soaking Aedes aegypti pupae in dsRNA[J]. Insects, 2021, 12(7):634. DOI:10.3390/insects12070634. [70] Li CJ, Zamore PD. RNAi in Drosophila S2 cells by dsRNA soaking[J]. Cold Spring Harb Protoc, 2019, 2019(3):207-208. DOI:10.1101/pdb.prot097477. [71] Joga MR, Zotti MJ, Smagghe G, et al. RNAi efficiency, systemic properties, and novel delivery methods for pest insect control:What we know so far[J]. Front Physiol, 2016, 7:553. DOI:10.3389/fphys.2016.00553. [72] Sharath Chandra G, Asokan R, Manamohan M, et al. Enhancing RNAi by using concatemerized double-stranded RNA[J]. Pest Manag Sci, 2019, 75(2):506-514. DOI:10.1002/ps.5149. [73] Kishk A, Anber HAI, AbdEl‐Raof TK, et al. RNA interference of carboxyesterases causes nymph mortality in the Asian citrus psyllid, Diaphorina citri[J]. Arch Insect Biochem Physiol, 2017, 94(3):e21377. DOI:10.1002/arch.21377. [74] Kishk A, Hijaz F, Anber HAI, et al. RNA interference of acetylcholinesterase in the Asian citrus psyllid, Diaphorina citri, increases its susceptibility to carbamate and organophosphate insecticides[J]. Pestic Biochem Physiol, 2017, 143:81-89. DOI:10.1016/j.pestbp.2017.09.004. [75] Kunte N, McGraw E, Bell S, et al. Prospects, challenges and current status of RNAi through insect feeding[J]. Pest Manag Sci, 2020, 76(1):26-41. DOI:10.1002/ps.5588. [76] Kim YH, Soumaila Issa M, Cooper AMW, et al. RNA interference:Applications and advances in insect toxicology and insect pest management[J]. Pestic Biochem Physiol, 2015, 120:109-117. DOI:10.1016/j.pestbp.2015.01.002. [77] Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate[J]. EMBO J, 2001, 20(23):6877-6888. DOI:10.1093/emboj/20.23.6877. [78] Boutla A, Kalantidis K, Tavernarakis N, et al. Induction of RNA interference in Caenorhabditis elegans by RNAs derived from plants exhibiting post-transcriptional gene silencing[J]. Nucleic Acids Res, 2002, 30(7):1688-1694. DOI:10.1093/nar/30.7.1688. [79] Chiu YL, Rana TM. siRNA function in RNAi:A chemical modification analysis[J]. RNA, 2003, 9(9):1034-1048. DOI:10.1261/rna.5103703. [80] Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs[J]. Nat Biotechnol, 2005, 23(8):1002-1007. DOI:10.1038/nbt1122. [81] Dang Y, Guan JJ. Nanoparticle-based drug delivery systems for cancer therapy[J]. Smart Mater Med, 2020, 1:10-19. DOI:10.1016/j.smaim.2020.04.001. |
[1] | 钱佳文, 沈钰钢, 王宏伟, 欧晓阳, 张灵, 李严, 任力波, 竹璐彬, 肖招英. 2016—2023年浙江省嵊州市发热伴血小板减少综合征的流行特征及蜱、动物感染监测[J]. 中国媒介生物学及控制杂志, 2024, 35(6): 692-698. |
[2] | 刘如金, 郭宪国, 赵成富, 张志伟, 赵亚飞, 范蓉, 宋文宇. 云南省德宏傣族景颇族自治州小兽体表恙螨分类名录[J]. 中国媒介生物学及控制杂志, 2024, 35(3): 349-357. |
[3] | 王学军, 孙钦同, 刘言, 韩英男, 刘文杰, 马德珍, 曹馨月, 赖世宏, 康殿民, 朱雷. 山东省市、县级疾控机构媒介生物防制能力现状及对策分析[J]. 中国媒介生物学及控制杂志, 2024, 35(1): 79-84. |
[4] | 孙钦同, 刘言, 韩英男, 胡巨凤, 王学军, 刘文杰, 曹馨月, 赖世宏, 何倩, 景晓. 气象因素对济南市城区蚊密度影响及滞后效应分析[J]. 中国媒介生物学及控制杂志, 2023, 34(6): 799-803,813. |
[5] | 黄小丹, 肖洒, 贺长皓, 李智杰, 张秀霞, 李亚军, 费小雯, 邓晓东. CYP307A1 RNAi重组小球藻口服喂饲对白纹伊蚊的致死作用[J]. 中国媒介生物学及控制杂志, 2023, 34(3): 336-343. |
[6] | 梁莹, 徐烨, 殷颖璇, 李学荣, 茅范贞, 戴洋, 李泓运, 李超, 马德龙, 周若冰, 韦晓慧, 王晓旭, 冀好强, 岳玉娟, 侯雪新, 李明慧, 李振军, 蔡慧玲, 刘起勇. 中国重要外来入侵媒介和病原生物名录(2023版)[J]. 中国媒介生物学及控制杂志, 2023, 34(2): 129-136. |
[7] | 刘起勇, 刘小波, 常楠, 张璐. 2012-2021年我国媒介生物及相关传染病监测控制进展及成效[J]. 中国媒介生物学及控制杂志, 2022, 33(5): 613-621. |
[8] | 徐爱玲, 栗冬梅, 刘起勇. “鼠源疾病”的概念与内涵的系统评价[J]. 中国媒介生物学及控制杂志, 2022, 33(2): 161-170. |
[9] | 刘起勇. 2005-2020年我国媒介生物传染病报告病例:流行趋势、防控挑战及应对策略[J]. 中国媒介生物学及控制杂志, 2022, 33(1): 1-7. |
[10] | 刘起勇. 气候变化对中国媒介生物传染病的影响及应对——重大研究发现及未来研究建议[J]. 中国媒介生物学及控制杂志, 2021, 32(1): 1-11. |
[11] | 孔庆鑫, 韦凌娅, 沈林海, 王英红, 曹阳. 双链RNA饲喂干扰家蝇CYP6D1基因表达方法的建立[J]. 中国媒介生物学及控制杂志, 2020, 31(4): 430-432. |
[12] | 王海洋, 王洋, 宋晓, 程鹏, 公茂庆. RNA干扰技术在蚊虫防治工作中的研究进展[J]. 中国媒介生物学及控制杂志, 2020, 31(2): 234-238. |
[13] | 刘起勇. 媒介生物可持续控制策略和实践——新中国70年媒介生物传染病控制成就[J]. 中国媒介生物学及控制杂志, 2019, 30(4): 361-366. |
[14] | 刘起勇. 新时代媒介生物传染病形势及防控对策[J]. 中国媒介生物学及控制杂志, 2019, 30(1): 1-6. |
[15] | 王桂安, 孙斌, 马晓, 杨思嘉. 媒介生物防制培训信息系统的建设及实践[J]. 中国媒介生物学及控制杂志, 2018, 29(4): 420-423. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
中国媒介生物学及控制杂志 © 2021 版权所有
地址:北京昌平区昌百路155号 电话:010-58900731
Email:bingmei@icdc.cn
网址:http://www.bmsw.net.cn
技术支持:010-62662699
总访问:
今日访问:
当前在线: