[1] Rasmussen S, Allentoft M, Nielsen K, et al. Early divergent strains of Yersinia pestis in Eurasia 5 000 years ago[J]. Cell, 2015, 163(3):571-582. DOI:10.1016/j.cell.2015.10.009. [2] Susat J, Lübke H, Immel A, et al. A 5 000-year-old hunter-gatherer already plagued by Yersinia pestis[J]. Cell Rep, 2021, 35(13):109278. DOI:10.1016/j.celrep.2021.109278. [3] Yang RF, Atkinson S, Chen ZQ, et al. Yersinia pestis and plague:Some knowns and unknowns[J]. Zoonoses (Burlingt), 2023, 3(1):5. DOI:10.15212/zoonoses-2022-0040. [4] Vogler AJ, Keim P, Wagner DM. A review of methods for subtyping Yersinia pestis:From phenotypes to whole genome sequencing[J]. Infect Genet Evol, 2016, 37:21-36. DOI:10.1016/j.meegid.2015.10.024. [5] Zhao XN, Wu WL, Qi ZZ, et al. The complete genome sequence and proteomics of Yersinia pestis phage Yep-phi[J]. J Gen Virol, 2011, 92(1):216-221. DOI:10.1099/vir.0.026328-0. [6] Stanley SY, Maxwell KL. Phage-encoded anti-CRISPR defenses[J]. Annu Rev Genet, 2018, 52:445-464. DOI:10.1146/annurev-genet-120417-031321. [7] Wang ZJ, Wang P. Research progress on the types of phage receptors and the binding mode between phage and its host[J]. J Pathog Biol, 2022, 17(6):739-743. DOI:10.13350/j.cjpb.220625.(in Chinese) 王紫鉴, 王鹏. 噬菌体受体种类及噬菌体与宿主结合方式研究进展[J]. 中国病原生物学杂志, 2022, 17(6):739-743. DOI:10.13350/j.cjpb.220625. [8] Zhong ZJ, Rao XC, Le S. Molecular mechanisms of bacterial resistance to bacteriophage infection:A review[J]. Microbiol China, 2021, 48(9):3249-3260. DOI:10.13344/j.microbiol.china.210483.(in Chinese) 钟卓君, 饶贤才, 乐率. 细菌耐受噬菌体感染的分子机制研究进展[J]. 微生物学通报, 2021, 48(9):3249-3260. DOI:10.13344/j.microbiol.china.210483. [9] Hu FQ, Tong YG. Bacteriophage:From basic science to application[M]. Beijing:Science Press, 2021:131-179. (in Chinese) 胡福泉, 童贻刚. 噬菌体学:从理论到实践[M]. 北京:科学出版社, 2021:131-179. [10] Alseth EO, Pursey E, Luján AM, et al. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance[J]. Nature, 2019, 574(7779):549-552. DOI:10.1038/s41586-019-1662-9. [11] Xiao LS, Qi ZZ, Song K, et al. Interplays of mutations in waaA, cmk, and ail contribute to phage resistance in Yersinia pestis[J]. Front Cell Infect Microbiol, 2023, 13:1174510. DOI:10.3389/fcimb.2023.1174510. [12] Testa S, Berger S, Piccardi P, et al. Spatial structure affects phage efficacy in infecting dual-strain biofilms of Pseudomonas aeruginosa[J]. Commun Biol, 2019, 2:405. DOI:10.1038/s42003-019-0633-x. [13] Debray R, De Luna N, Koskella B. Historical contingency drives compensatory evolution and rare reversal of phage resistance[J]. Mol Biol Evol, 2022, 39(9):msac182. DOI:10.1093/molbev/msac182. [14] Wang X, Wang J, Song ZZ, et al. Ecological structure of plague in China [M]. Beijing:People's Medical Publishing House, 2023:103-104.(in Chinese) 王鑫, 王健, 宋志忠, 等. 中国鼠疫生态结构[M]. 北京:人民卫生出版社, 2023:103-104. [15] Holtappels D, Alfenas-Zerbini P, Koskella B. Drivers and consequences of bacteriophage host range[J]. FEMS Microbiol Rev, 2023, 47(4):fuad038. DOI:10.1093/femsre/fuad038. |