[1] Chen B, Liu QY. Dengue fever in China[J]. Lancet, 2015, 385(9978):1621-1622. DOI:10.1016/S0140-6736(15)60793-0.
[2] Chinese Society of Tropical Disease and Parasitology, Society for Vector Biology and Control of the Chinese Preventive Medicine Association, Basic Research Committee, China Association for Vaccines, et al. Expert consensus on the disease burden and strategies of dengue prevention and control in China[J]. Chin J Zoonoses, 2024, 40(6):489-497. DOI:10.3969/j.issn.1002-2694.2024.00.090.(in Chinese) 中华医学会热带病与寄生虫学分会, 中华预防医学会媒介生物学及控制分会, 中国疫苗行业协会基础研究专业委员会, 等. 登革热疾病负担及预防控制策略中国专家共识[J]. 中国人兽共患病学报, 2024, 40(6):489-497. DOI:10.3969/j.issn.1002-2694.2024.00.090.
[3] Jin Y, Sun DW, Luo HM. Does the prevention and control of dengue fever remain “an uphill battle”?[J]. China Trop Med, 2024, 24(8):893-895. DOI:10.13604/j.cnki.46-1064/r.2024.08.01.(in Chinese) 靳妍, 孙定炜, 罗会明. 登革热预防控制任重道远吗?[J]. 中国热带医学, 2024, 24(8):893-895. DOI:10.13604/j.cnki.46-1064/r.2024.08.01.
[4] Lu N, Zhou HN. Research progress on the insecticide resistance in the important vector Aedes albopictus of dengue fever in China[J]. J Trop Dis Parasitol, 2022, 20(3):165-169. (in Chinese) 卢娜, 周红宁. 我国登革热重要媒介白纹伊蚊抗药性研究进展[J]. 热带病与寄生虫学, 2022, 20(3):165-169.
[5] Liu QY. Dengue fever in China:New epidemical trend, challenges and strategies for prevention and control[J]. Chin J Vector Biol Control, 2020, 31(1):1-6. DOI:10.11853/j.issn.1003.8280.2020.01.001.(in Chinese) 刘起勇. 我国登革热流行新趋势、防控挑战及策略分析[J]. 中国媒介生物学及控制杂志, 2020, 31(1):1-6. DOI:10.11853/j.issn.1003.8280.2020.01.001.
[6] Liu QY. Impact of climate change on vector-borne diseases and related response strategies in China:Major research findings and recommendations for future research[J]. Chin J Vector Biol Control, 2021, 32(1):1-11. DOI:10.11853/j.issn.1003.8280.2021.01.001.(in Chinese) 刘起勇. 气候变化对中国媒介生物传染病的影响及应对——重大研究发现及未来研究建议[J]. 中国媒介生物学及控制杂志, 2021, 32(1):1-11. DOI:10.11853/j.issn.1003.8280.2021.01.001.
[7] Findlater A, Moineddin R, Kain D, et al. The use of air travel data for predicting dengue importation to China:A modelling study[J]. Travel Med Infect Dis, 2019, 31:101446. DOI:10.1016/j.tmaid.2019.07.002.
[8] Gao PJ, Pilot E, Rehbock C, et al. Land use and land cover change and its impacts on dengue dynamics in China:A systematic review[J]. PLoS Negl Trop Dis, 2021, 15(10):e0009879. DOI:10.1371/journal.pntd.0009879.
[9] Oidtman RJ, Lai SJ, Huang ZJ, et al. Inter-annual variation in seasonal dengue epidemics driven by multiple interacting factors in Guangzhou, China[J]. Nat Commun, 2019, 10(1):1148. DOI:10.1038/s41467-019-09035-x.
[10] Zhao Z, Yue YJ, Liu XB, et al. The patterns and driving forces of dengue invasions in China[J]. Infect Dis Poverty, 2023, 12(1):42. DOI:10.1186/s40249-023-01093-0.
[11] Ni HB, Cai XY, Ren JR, et al. Epidemiological characteristics and transmission dynamics of dengue fever in China[J]. Nat Commun, 2024, 15(1):8060. DOI:10.1038/s41467-024-52460-w.
[12] Metelmann S, Liu XB, Lu L, et al. Assessing the suitability for Aedes albopictus and dengue transmission risk in China with a delay differential equation model[J]. PLoS Negl Trop Dis, 2021, 15(3):e0009153. DOI:10.1371/journal.pntd.0009153.
[13] Li CY, Chen XG. Research and application progress of Aedes albopictus monitoring and control techniques[J]. China Trop Med, 2018, 18(7):732-736, 739. DOI:10.13604/j.cnki.46-1064/r.2018.07.26.(in Chinese) 李晨颖, 陈晓光. 媒介白纹伊蚊监测和控制技术研究及应用进展[J]. 中国热带医学, 2018, 18(7):732-736, 739. DOI:10.13604/j.cnki.46-1064/r.2018.07.26.
[14] Cao G, Chen AX, Yang X, et al. Research advances in surveillance methods of mosquito density[J]. Chin J Hyg Insect Equip, 2022, 28(5):471-475. DOI:10.19821/j.1671-2781.2022.05.022.(in Chinese) 曹淦, 陈安喜, 杨晓, 等. 蚊虫密度监测方法的研究进展[J]. 中华卫生杀虫药械, 2022, 28(5):471-475. DOI:10.19821/j.1671-2781.2022.05.022.
[15] Xie YG. Effect of sustained-release tablets of Bacillus thuringiensis subspecies israelensis (Bti) on vector mosquito, Aedes albopictus[D]. Guangzhou:Southern Medical University, 2020. DOI:10.27003/d.cnki.gojyu.2020.000410.(in Chinese) 谢雨谷. 苏云金杆菌缓释片剂对白纹伊蚊的杀灭效果研究[D]. 广州:南方医科大学, 2020. DOI:10.27003/d.cnki.gojyu.2020.000410.
[16] Wang F, Lu JL, Jiang L, et al. Field evaluation of insecticidal barrier spray on vegetation for the control of Aedes albopictus[J]. Chin J Vector Biol Control. 2016, 27(6):555-557. DOI:10.11853/j.issn.1003.8280.2016.06.07.(in Chinese) 王飞, 陆珏磊, 蒋璐, 等. 绿篱施药技术现场控制白纹伊蚊的效果研究[J]. 中国媒介生物学及控制杂志, 2016, 27(6):555-557. DOI:10.11853/j.issn.1003.8280.2016.06.07.
[17] Zhu W, Liu XY, Zhou YB. Spatiotemporal variation of Aedes albopictus density treated by hedgerow spraying[J]. Chin J Vector Biol Control, 2021, 32(6):772-778. DOI:10.11853/j.issn.1003.8280.2021.06.022.(in Chinese) 朱伟, 刘翔宇, 周毅彬. 绿篱喷洒控制白纹伊蚊密度的时空变化研究[J]. 中国媒介生物学及控制杂志, 2021, 32(6):772-778. DOI:10.11853/j.issn.1003.8280.2021.06.022.
[18] Chiu MC, Neoh KB, Hwang SY. The effect of attractive toxic sugar bait on the Asian tiger mosquito, Aedes albopictus (Diptera:Culicidae) in community farms in northern Taiwan[J]. Acta Trop, 2024, 250:107102. DOI:10.1016/j.actatropica.2023.107102.
[19] Kumar S, Sharma A, Samal RR, et al. Development of deltamethrin-laced attractive toxic sugar bait to control Aedes aegypti (Linnaeus) population[J]. J Trop Med, 2024, 2024(1):6966205. DOI:10.1155/2024/6966205.
[20] Müller GC, Junnila A, Schlein Y. Effective control of adult Culex pipiens by spraying an attractive toxic sugar bait solution in the vegetation near larval habitats[J]. J Med Entomol, 2010, 47(1):63-66. DOI:10.1093/jmedent/47.1.63.
[21] Müller GC, Beier JC, Traore SF, et al. Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods[J]. Malar J, 2010, 9:262. DOI:10.1186/1475-2875-9-262.
[22] Permana DH, Zubaidah S, Syahrani L, et al. Impact of a spatial repellent product on Anopheles and non-Anopheles mosquitoes in Sumba, Indonesia[J]. Malar J, 2022, 21(1):166. DOI:10.1186/s12936-022-04185-8.
[23] Hu WB, Yang LP, Bao WF, et al. A systematic review on efficacy of S-methoprene for controlling dengue vector Aedes mosquitoes[J]. Chin J Vector Biol Control, 2024, 35(1):115-120. DOI:10.11853/j.issn.1003.8280.2024.01.021.(in Chinese) 胡文博, 杨丽萍, 包文风, 等. S-烯虫酯对登革热媒介伊蚊控制效果的系统综述[J]. 中国媒介生物学及控制杂志, 2024, 35(1):115-120. DOI:10.11853/j.issn.1003.8280.2024.01.021.
[24] Chen HY, Cai EM. Advances in application research of methoprene[J]. Shanghai J Prev Med, 2018, 30(8):659-662. DOI:10.19428/j.cnki.sjpm.2018.18779.(in Chinese) 陈辉莹, 蔡恩茂. 昆虫保幼激素类似物烯虫酯的应用研究进展[J]. 上海预防医学, 2018, 30(8):659-662. DOI:10.19428/j.cnki.sjpm.2018.18779.
[25] Gong JT, Liang ZM, Wei YY, et al. Field application of Wolbachia-infected incompatible mosquitoes in communities at high risk for dengue fever[J]. Chin J Vector Biol Control, 2024, 35(3):287-292. DOI:10.11853/j.issn.1003.8280.2024.03.005.(in Chinese) 龚君淘, 梁自勉, 韦迎阳, 等. 沃尔巴克氏体不育蚊在登革热高风险社区的现场应用[J]. 中国媒介生物学及控制杂志, 2024, 35(3):287-292. DOI:10.11853/j.issn.1003.8280.2024.03.005.
[26] Zheng XL. Research progress of genetic modified mosquitoes for the control of mosquito-borne infectious diseases[J]. Acta Parasitol Med Entomol Sin, 2017, 24(4):257-265. DOI:10.3969/j.issn.1005-0507.2017.04.009.(in Chinese) 郑学礼. 应用遗传修饰蚊虫控制蚊媒传染病的研究进展[J]. 寄生虫与医学昆虫学报, 2017, 24(4):257-265. DOI:10.3969/j.issn.1005-0507.2017.04.009.
[27] Wang HF, Dai YH, Gong MQ. Progress in application of genetic control of mosquitoes. Chin J Schisto Control2013, 25(3):316-319.DOI:10.16250/j.32.1374.2013.03.008.(in Chinese) 王海防, 代玉华, 公茂庆. 蚊虫遗传防制的应用进展[J]. 中国血吸虫病防治杂志, 2013, 25(03):316-319.DOI:10.16250/j.32.1374.2013.03.008.
[28] Gao Q, Leng PE. Current state and prospect of dengue prevention and control[J]. China Trop Med, 2024, 24(1):40-48. DOI:10.13604/j.cnki.46-1064/r.2024.01.08.(in Chinese) 高强, 冷培恩. 登革热防控的现状与展望[J]. 中国热带医学, 2024, 24(1):40-48. DOI:10.13604/j.cnki.46-1064/r.2024.01.08.
[29] Xu M, Chang N, Tu TT, et al. Economic burden of dengue fever in China:A retrospective research study[J]. PLoS Negl Trop Dis, 2022, 16(5):e0010360. DOI:10.1371/journal.pntd.0010360.
[30] Li ZH. Integration of traditional surveillance and internet search data to construct the early warning mode of dengue fever[D]. Guangzhou: Jinan Universty, 2016. (in Chinese) 李志浩. 整合传统监测和网络搜索数据构建登革热预警模型[D]. 广州:暨南大学, 2016.
[31] Li ZC, Dong JW, Liu QY. Application of geospatial big data and artificial intelligence in driving factor identification and risk prediction for urban dengue fever[J]. Chin J Vector Biol Control, 2022, 33(3):321-325. DOI:10.11853/j.issn.1003.8280.2022.03.001.(in Chinese) 李之超, 董金玮, 刘起勇. 地理空间大数据与人工智能在城市登革热驱动因素识别与风险预测中的应用[J]. 中国媒介生物学及控制杂志, 2022, 33(3):321-325. DOI:10.11853/j.issn.1003.8280.2022.03.001.
[32] Chen J, Ding RL, Liu KK, et al. Collaboration between meteorology and public health:Predicting the dengue epidemic in Guangzhou, China, by meteorological parameters[J]. Front Cell Infect Microbiol, 2022, 12:881745. DOI:10.3389/fcimb.2022.881745.
[33] Zhou XW, Yang R, Du LF, et al. International joint prevention and control for malaria and dengue in Lancang River-Mekong sub-region:Achievement, impact and implication[J]. Chin J Public Health, 2020, 36(12):1747-1751. DOI:10.11847/zgggws1132156.(in Chinese) 周兴武, 杨锐, 杜龙飞, 等. 澜沧江-湄公河合作疟疾和登革热联防联控建设成效与启示[J]. 中国公共卫生, 2020, 36(12):1747-1751. DOI:10.11847/zgggws1132156.
[34] Yang R, Long JM, Wang X, et al. Progress in epidemiological characteristics and surveillance and early warning of dengue fever in China[J]. Chin J Epidemiol, 2024, 45(2):305-312. DOI:10.3760/cma.j.cn112338-20230811-00062.(in Chinese) 杨蕊, 龙佳敏, 王霞, 等. 我国登革热的流行特征及监测预警研究进展[J]. 中华流行病学杂志, 2024, 45(2):305-312. DOI:10.3760/cma.j.cn112338-20230811-00062. |