中国媒介生物学及控制杂志 ›› 2024, Vol. 35 ›› Issue (3): 316-322.DOI: 10.11853/j.issn.1003.8280.2024.03.011

• 媒介生物传染病 • 上一篇    下一篇

山东省2006-2021年恙虫病流行特征和时空聚集性分析

石圆1, 伦辛畅2, 陈奕瑾1, 于胜男1, 郑良1, 汪子豪2, 李晋宇1, 李秀君1, 鲁亮2   

  1. 1. 山东大学齐鲁医学院公共卫生学院, 山东 济南 250012;
    2. 传染病溯源预警与智能决策全国重点实验室, 中国疾病预防控制中心传染病预防控制所媒介生物控制室, 世界卫生组织媒介生物监测与管理合作中心, 北京 102206
  • 收稿日期:2023-09-22 出版日期:2024-06-20 发布日期:2024-06-29
  • 通讯作者: 李秀君,E-mail:xjli@sdu.edu.cn;鲁亮,E-mail:luliang@icdc.cn
  • 作者简介:石圆,女,在读硕士,主要从事传染病流行病学研究工作,E-mail:Shiyuan@mail.sdu.edu.cn
  • 基金资助:
    媒介生物监测与控制项目(102393220020020000012)

Epidemiological characteristics and spatiotemporal clustering of scrub typhus in Shandong Province, China, 2006-2021

SHI Yuan1, LUN Xin-chang2, CHEN Yi-jin1, YU Sheng-nan1, ZHENG Liang1, WANG Zi-hao2, LI Jin-yu1, LI Xiu-jun1, LU Liang2   

  1. 1. School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China;
    2. Department of Vector Biology and Control, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Vector Surveillance and Management, Beijing 102206, China
  • Received:2023-09-22 Online:2024-06-20 Published:2024-06-29
  • Supported by:
    Vector Surveillance and Control Project (No. 102393220020020000012)

摘要: 目的 分析山东省恙虫病的三间分布特征及空间和时空聚集性,探索高风险区,为制定防治策略和控制措施提供科学依据。方法 利用描述流行病学方法、空间自相关分析和时空聚集性分析描述山东省2006-2021年恙虫病的时空分布特征并确定高风险地区,采用ArcGIS 10.8软件对结果进行可视化。结果 山东省2006-2021年共报告恙虫病病例10 207例,年均发病率0.64/10万,发病率呈先上升后下降的趋势。病例呈单峰分布,主要集中在40~<80岁年龄组,职业分布以农民为主,时间主要集中在10-11月。逐年发病率全局Moran’s I指数为0.203~0.676(均P<0.05),恙虫病在县(区)尺度上呈空间正相关,局部自相关分析结果显示高-高聚集区主要有济南市莱芜区和钢城区、泰安市新泰市、临沂市沂水县、日照市莒县和五莲县等。单纯空间扫描分析结果显示,恙虫病存在明显聚集性,2006-2021年空间聚集区呈现从中部向南部和东部扩大的趋势。时空扫描发现1个高发病率时空聚集区,时间为2014年10月-2017年11月,中心为日照市东港区,辐射半径为199.11 km[相对危险度(RR)值=8.24,最大对数似然比(LLR)值=4 107.176,P<0.01)]。结论 2006-2021年山东省恙虫病发病率先上升后下降,且存在显著的时空聚集性,高发病聚集区不断扩大,应在高发地区、高发季节对重点人群采取有效防控措施。

关键词: 恙虫病, 时空聚集性, 空间自相关, 流行病学研究

Abstract: Objective To analyze the distribution characteristics, spatial and spatiotemporal clustering of scrub typhus in Shandong Province, China, and to identify high-risk areas, so as to provide scientific information for developing scrub typhus prevention and control strategies and measures.Methods Descriptive epidemiological methods, spatial autocorrelation analysis, and spatiotemporal clustering were used to analyze the spatiotemporal distribution characteristics of scrub typhus in Shandong Province from 2006 to 2021, and identified high-risk areas. ArcGIS 10.8 software was used to visualize the results.Results A total of 10 207 cases were reported in Shandong Province during 2006-2021, with a mean annual incidence rate of 0.64/100 000, and the incidence rate increased first and then decreased. Unimodal distributions were observed in the cases with respect to age (concentrated in 40-<80 years) and seasonality (peaking in October to November). By occupation, most of the patients were farmers. The global Moran’s I index of the annual incidence rate of scrub typhus was 0.203-0.676 (all P<0.05), indicating a positive spatial correlation at the district/county level. The local autocorrelation analysis results showed that high-high cluster areas mainly included Laiwu District and Gangcheng District of Jinan, Xintai City of Tai’an, Yishui County of Linyi, and Ju County and Wulian County of Rizhao. The spatial scan analysis results showed that the cases were spatially clustered, and the spatial clusters tended to expand from the central to the southern and eastern parts of Shandong Province from 2006 to 2021. The spatiotemporal scan analysis detected a spatiotemporal cluster area with a high incidence rate, which centered around Donggang District of Rizhao, with a radiation radius of 199.11 km, from October 2014 to November 2017 (risk ratio=8.24, log-likelihood ratio=4 107.176, P<0.01).Conclusions From 2006 to 2021, the incidence of scrub typhus in Shandong Province first increased and then decreased, with significant spatiotemporal clustering, and high-incidence cluster areas had been expanding continuously. Effective measures should be taken for key populations in high-incidence regions and seasons.

Key words: Scrub typhus, Spatiotemporal clustering, Spatial autocorrelation, Epidemiological research

中图分类号: