[1] Zhang HL,Liang GD. Arboviruses and arboviral diseases in China[J]. Chin J Vector Biol Control,2012,23(5):377-380. (in Chinese) 张海林,梁国栋. 中国虫媒病毒和虫媒病毒病[J]. 中国媒介生物学及控制杂志,2012,23(5):377-380. [2] Fang Y,Khater EIM,Xue JB,et al. Epidemiology of mosquito-borne viruses in Egypt:A systematic review[J]. Viruses,2022,14(7):1577. DOI:10.3390/v14071577. [3] Macke E,Tasiemski A,Massol F,et al. Life history and eco-evolutionary dynamics in light of the gut microbiota[J]. Oikos,2017,126(4):508-531. DOI:10.1111/oik.03900. [4] SunXH. miR-13664 regulates deltamethrin resistance in Culex pipiens pallens[D]. Nanjing:Nanjing Medical University,2018. DOI:10.27249/d.cnki.gnjyu.2018.000226.(in Chinese) 孙小红. miR-13664与蚊抗药性关系的研究[D]. 南京:南京医科大学,2018. DOI:10.27249/d.cnki.gnjyu.2018.000226. [5] World Health Organization. World malaria report 2013[M]. Geneva:World Health Organization,2013:6. [6] Campos KB,Alomar AA,Eastmond BH,et al. Brazilian populations of Aedes aegypti resistant to pyriproxyfen exhibit lower susceptibility to infection with Zika virus[J]. Viruses,2022,14(10):2198. DOI:10.3390/v14102198. [7] Viglietta M,Bellone R,Blisnick AA,et al. Vector specificity of arbovirus transmission[J]. Front Microbiol,2021,12:773211. DOI:10.3389/fmicb.2021.773211. [8] Tabachnick WJ. Genetics of insect vector competence for arboviruses[M]//Harris KF. Advances in disease vector research. New York:Springer,1994:93-108. DOI:10.1007/978-1-4612-2590-4_4. [9] Wang LJ,Fontaine A,Gaborit P,et al. Interactions between vector competence to Chikungunya virus and resistance to deltamethrin in Aedes aegypti laboratory lines?[J]. Med Vet Entomol,2022,36(4):486-495. DOI:10.1111/mve.12593. [10] WeiY. Genetic diversity and vector competence for DENV-2 in Aedes albopictus populations from different regions of China[D]. Guangzhou:Southern Medical University,2021. DOI:10.27003/d.cnki.gojyu.2021.000133.(in Chinese) 魏勇. 中国不同地区白纹伊蚊种群遗传多样性和感染DENV-2媒介能力的研究[D]. 广州:南方医科大学,2021. DOI:10. 27003/d.cnki.gojyu.2021.000133. [11] LiuMD. Study on the relation of Dengue 2 virus’ receptor to mesenteron infection barrier in Aedes albopictus and Culex pipiens quinquefasciatus[D]. Beijing:Academy of Military Medical Sciences,2003. (in Chinese) 刘美德. 白纹伊蚊和致倦库蚊对登革2型病毒中肠感染屏障与病毒受体关系的研究[D]. 北京:中国人民解放军军事医学科学院,2003. [12] Juache-Villagrana AE,Pando-Robles V,Garcia-Luna SM,et al. Assessing the impact of insecticide resistance on vector competence:A review[J]. Insects,2022,13(4):377. DOI:10.3390/insects13040377. [13] Parker-Crockett C,Connelly CR,Siegfried B,et al. Influence of pyrethroid resistance on vector competency for Zika virus by Aedes aegypti (Diptera:Culicidae)[J]. J Med Entomol,2021,58(4):1908-1916. DOI:10.1093/jme/tjab035. [14] Zhao LM,Alto BW,Shin D,et al. The effect of permethrin resistance on Aedes aegypti transcriptome following ingestion of Zika virus infected blood[J]. Viruses,2018,10(9):470. DOI:10.3390/v10090470. [15] Stephenson CJ,Coatsworth H,Waits CM,et al. Geographic partitioning of Dengue virus transmission risk in Florida[J]. Viruses,2021,13(11):2232. DOI:10.3390/v13112232. [16] Deng JL,Guo YJ,Su XH,et al. Impact of deltamethrin-resistance in Aedes albopictus on its fitness cost and vector competence[J]. PLoS Negl Trop Dis,2021,15(4):e0009391. DOI:10.1371/journal.pntd.0009391. [17] Hanley KA,Azar SR,Campos RK,et al. Support for the transmission-clearance trade-off hypothesis from a study of Zika virus delivered by mosquito bite to mice[J]. Viruses,2019,11(11):1072. DOI:10.3390/v11111072. [18] Chen TY,Smartt CT,Shin D. Permethrin resistance in Aedes aegypti affects aspects of vectorial capacity[J]. Insects,2021,12(1):71. DOI:10.3390/insects12010071. [19] Ye YH,Chenoweth SF,Carrasco AM,et al. Evolutionary potential of the extrinsic incubation period of Dengue virus in Aedes aegypti[J]. Evolution,2016,70(11):2459-2469. DOI:10.1111/evo.13039. [20] Brito LP,Linss JGB,Lima-Camara TN,et al. Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost[J]. PLoS One,2013,8(4):e60878. DOI:10.1371/journal.pone.0060878. [21] Serrato IM,Moreno-Aguilera D,Caicedo PA,et al. Vector competence of lambda-cyhalothrin resistant Aedes aegypti strains for Dengue-2,Zika and Chikungunya viruses in Colombia[J]. PLoS One,2022,17(10):e0276493. DOI:10.1371/journal.pone.0276493. [22] Atyame CM,Alout H,Mousson L,et al. Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus[J]. Proc Roy Soc B:Biol Sci,2019,286(1894):20182273. DOI:10.1098/rspb.2018.2273. [23] McCarroll L,Hemingway J. Can insecticide resistance status affect parasite transmission in mosquitoes?[J]. Insect Biochem Mol Biol,2002,32(10):1345-1351. DOI:10.1016/S0965-1748(02)00097-8. [24] Zhu F,Lavine L,O’Neal S,et al. Insecticide resistance and management strategies in urban ecosystems[J]. Insects,2016,7(1):2. DOI:10.3390/insects7010002. [25] Xie RL,Huang LF,Peng LL,et al. Deltamethrin exposure induced the alteration of amino acids level in the wild deltamethrin-resistant strain of Aedes albopictus larvae[J]. J Trop Med,2018,18(3):285-288. DOI:10.3969/j.issn.1672-3619.2018.03.003.(in Chinese) 解锐历,黄莲芬,彭丽兰,等. 溴氰菊酯暴露对白纹伊蚊抗性株幼虫氨基酸水平的影响[J]. 热带医学杂志,2018,18(3):285-288. DOI:10.3969/j.issn.1672-3619.2018.03.003. [26] Shi QQ,Cheng P,Gong MQ. Progress in molecular mechanisms of mosquito resistance to insecticides[J]. Chin J Vector Biol Control,2016,27(5):515-519. DOI:10.11853/j.issn.1003. 8280.2016.05.028.(in Chinese) 史琦琪,程鹏,公茂庆. 蚊虫抗药性分子机制研究进展[J]. 中国媒介生物学及控制杂志,2016,27(5):515-519. DOI:10.11853/j.issn.1003.8280.2016.05.028. [27] Agarwal A,Parida M,Dash PK. Impact of transmission cycles and vector competence on global expansion and emergence of arboviruses[J]. Rev Med Virol,2017,27(5):e1941. DOI:10.1002/rmv.1941. [28] Rivero A,Vézilier J,Weill M,et al. Insecticide control of vector-borne diseases:When is insecticide resistance a problem?[J]. PLoS Pathog,2010,6(8):e1001000. DOI:10.1371/journal.ppat.1001000. [29] Friedlander E,Steinrücken M. A numerical framework for genetic hitchhiking in populations of variable size[J]. Genetics,2022,220(3):iyac012. DOI:10.1093/genetics/iyac012. [30] Martins AJ,Ribeiro CDEM,Bellinato DF,et al. Effect of insecticide resistance on development,longevity and reproduction of field or laboratory selected Aedes aegypti populations[J]. PLoS One,2012,7(3):e31889. [31] Yan GY,Chadee DD,Severson DW. Evidence for genetic hitchhiking effect associated with insecticide resistance in Aedes aegypti[J]. Genetics,1998,148(2):793-800. DOI:10.1093/genetics/148.2.793. [32] Mitri C,Markianos K,Guelbeogo WM,et al. The kdr-bearing haplotype and susceptibility to Plasmodium falciparum in Anopheles gambiae:Genetic correlation and functional testing[J]. Malar J,2015,14:391. DOI:10.1186/s12936-015-0924-8. [33] Rivero A,Magaud A,Nicot A,et al. Energetic cost of insecticide resistance in Culex pipiens mosquitoes[J]. J Med Entomol,2011,48(3):694-700. DOI:10.1603/ME10121. [34] Hardstone MC,Huang X,Harrington LC,et al. Differences in development,glycogen,and lipid content associated with cytochrome P450-mediated permethrin resistance in Culex pipiens quinquefasciatus (Diptera:Culicidae)[J]. J Med Entomol,2010,47(2):188-198. DOI:10.1093/jmedent/47.2.188. [35] Otali D,Novak RJ,Wan W,et al. Increased production of mitochondrial reactive oxygen species and reduced adult life span in an insecticide-resistant strain of Anopheles gambiae[J]. Bull Entomol Res,2014,104(3):323-333. DOI:10.1017/S0007485314000091. [36] Heu K,Gendrin M. Le microbiote de moustique et son influence sur la transmission vectorielle[J]. Biol Aujourd’hui,2018,212(3/4):119-136. DOI:10.1051/jbio/2019003. [37] Angleró-Rodríguez YI,Talyuli OA,Blumberg BJ,et al. An Aedes aegypti-associated fungus increases susceptibility to Dengue virus by modulating gut trypsin activity[J]. eLife,2017,6:e28844. DOI:10.7554/eLife.28844. [38] Dada N,Sheth M,Liebman K,et al. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors[J]. Sci Rep,2018,8(1):2084. [39] Dieme C,Rotureau B,Mitri C. Microbial pre-exposure and vectorial competence of Anopheles mosquitoes[J]. Front Cell Infect Microbiol,2017,7:508. DOI:10.3389/fcimb.2017.00508. [40] Gabrieli P,Caccia S,Varotto-Boccazzi I,et al. Mosquito trilogy:Microbiota,immunity and pathogens,and their implications for the control of disease transmission[J]. Front Microbiol,2021,12:630438. DOI:10.3389/fmicb.2021.630438. [41] Vijay S,Rawal R,Kadian K,et al. Annotated differentially expressed salivary proteins of susceptible and insecticide-resistant mosquitoes of Anopheles stephensi[J]. PLoS One,2015,10(3):e0119666. DOI:10.1371/journal.pone.0119666. [42] Djegbe I,Cornelie S,Rossignol M,et al. Differential expression of salivary proteins between susceptible and insecticide-resistant mosquitoes of Culex quinquefasciatus[J]. PLoS One,2011,6(3):e17496. DOI:10.1371/journal.pone.0017496. [43] Vlkova M,Rohousova I,Hostomska J,et al. Kinetics of antibody response in BALB/c and C57BL/6 mice bitten by Phlebotomus papatasi[J]. PLoS Negl Trop Dis,2012,6(7):e1719. DOI:10.1371/journal.pntd.0001719. [44] Gazave É,Chevillon C,Lenormand T,et al. Dissecting the cost of insecticide resistance genes during the overwintering period of the mosquito Culex pipiens[J]. Heredity,2001,87(4):441-448. DOI:10.1046/j.1365-2540.2001.00926.x. |