[1] Chen YB, Li WH, Hua JM, et al. Comparing of spatio-temporal diffusion prediction models of dengue fevers based on machine learning[J]. Geomat World, 2016, 23(6): 8-14. DOI:10.3969/j.issn.1672-1586.2016.06.002.(in Chinese) 陈业滨, 李卫红, 华家敏, 等. 基于机器学习的登革热时空扩散预测模型对比分析[J]. 地理信息世界, 2016, 23(6): 8-14. DOI:10.3969/j.issn.1672-1586.2016.06.002. [2] Bravo L, Roque VG, Brett J, et al. Epidemiology of dengue disease in the Philippines (2000-2011): A systematic literature review[J]. PLoS Negl Trop Dis, 2014, 8(11): e3027. DOI:10.1371/journal.pntd.0003027. [3] Cheng J, Bambrick H, Yakob L, et al. Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning[J]. PLoS Negl Trop Dis, 2020, 14(1): e0007997. DOI:10.1371/journal.pntd.0007997. [4] Guo CC, Zhou ZX, Wen ZH, et al. Global epidemiology of dengue outbreaks in 1990-2015: A systematic review and meta-analysis[J]. Front Cell Infect Microbiol, 2017, 7: 317. DOI:10.3389/fcimb.2017.00317. [5] Mone FH, Hossain S, Hasan MT, et al. Sustainable actions needed to mitigate dengue outbreak in Bangladesh[J]. Lancet Infect Dis, 2019, 19(11): 1166-1167. DOI:10.1016/S1473-3099(19)30541-9. [6] Xu L, Stige LC, Chan KS, et al. Climate variation drives dengue dynamics[J]. Proc Natl Acad Sci USA, 2017, 114(1): 113-118. DOI:10.1073/pnas.1618558114. [7] Messina JP, Brady OJ, Golding N, et al. The current and future global distribution and population at risk of dengue[J]. Nat Microbiol, 2019, 4(9): 1508-1515. DOI:10.1038/s41564-019-0476-8. [8] Liao ZW, Wang SQ. Prevalence and prevention of major tropical diseases in China, 2000-2019[J]. China Trop Med, 2020, 20(3): 193-201. DOI:10.13604/j.cnki.46-1064/r.2020.03.01.(in Chinese) 廖志武, 王善青. 我国2000-2019年主要热带病的流行与防治概况[J]. 中国热带医学, 2020, 20(3): 193-201. DOI:10.13604/j.cnki.46-1064/r.2020.03.01. [9] Lai SJ, Huang ZJ, Zhou H, et al. The changing epidemiology of dengue in China, 1990-2014: A descriptive analysis of 25 years of nationwide surveillance data[J]. BMC Med, 2015, 13: 100. DOI:10.1186/s12916-015-0336-1. [10] Zhao H, Zhang FC, Zhu Q, et al. Epidemiological and virological characterizations of the 2014 dengue outbreak in Guangzhou, China[J]. PLoS One, 2016, 11(6): e0156548. DOI:10.1371/journal.pone.0156548. [11] Liu QY. Dengue fever in China: New epidemical trend, challenges and strategies for prevention and control[J]. Chin J Vector Biol Control, 2020, 31(1): 1-6. DOI:10.11853/j.issn. 1003.8280.2020.01.001.(in Chinese) 刘起勇. 我国登革热流行新趋势、防控挑战及策略分析[J]. 中国媒介生物学及控制杂志, 2020, 31(1): 1-6. DOI:10.11853/j.issn.1003.8280.2020.01.001. [12] Shepard DS, Undurraga EA, Halasa YA, et al. The global economic burden of dengue: A systematic analysis[J]. Lancet Infect Dis, 2016, 16(8): 935-941. DOI:10.1016/S1473-3099(16)00146-8. [13] Morin CW, Comrie AC, Ernst K. Climate and dengue transmission: Evidence and implications[J]. Environ Health Perspect, 2013, 121(11/12): 1264-1272. DOI:10.1289/ehp. 1306556. [14] Mahmood S, Irshad A, Nasir JM, et al. Spatiotemporal analysis of dengue outbreaks in Samanabad town, Lahore metropolitan area, using geospatial techniques[J]. Environ Monit Assess, 2019, 191(2): 55. DOI:10.1007/s10661-018-7162-9. [15] Morgan J, Strode C, Salcedo-Sora JE. Climatic and socio-economic factors supporting the co-circulation of dengue, Zika and chikungunya in three different ecosystems in Colombia[J]. PLoS Negl Trop Dis, 2021, 15(3): e0009259. DOI:10.1371/journal.pntd.0009259. [16] Cheng J, Bambrick H, Yakob L, et al. Extreme weather conditions and dengue outbreak in Guangdong, China: Spatial heterogeneity based on climate variability[J]. Environ Res, 2021, 196: 110900. DOI:10.1016/j.envres.2021.110900. [17] Li CX, Liu QY, Ma W. Effects of extreme precipitation events on the incidence of dengue fever in different characteristic populations in Guangzhou[J]. J Shandong Univ: Health Sci, 2021, 59(12): 151-157. DOI:10.6040/j.issn.1671-7554.0. 2021.1013.(in Chinese) 李传玺, 刘起勇, 马伟. 广州市极端降水事件对不同特征人群登革热发病的影响[J]. 山东大学学报: 医学版, 2021, 59(12): 151-157. DOI:10.6040/j.issn.1671-7554.0.2021.1013. [18] Akter R, Hu WB, Gatton M, et al. Climate variability, socio-ecological factors and dengue transmission in tropical Queensland, Australia: A Bayesian spatial analysis[J]. Environ Res, 2021, 195: 110285. DOI:10.1016/j.envres.2020.110285. [19] Li CL, Wu XX, Sheridan S, et al. Interaction of climate and socio-ecological environment drives the dengue outbreak in epidemic region of China[J]. PLoS Negl Trop Dis, 2021, 15(10): e0009761. DOI:10.1371/journal.pntd.0009761. [20] Mudele O, Frery AC, Zanandrez LFR, et al. Dengue vector population forecasting using multisource earth observation products and recurrent neural networks[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2021, 99: 4390-4404. DOI:10.1109/JSTARS.2021.3073351. [21] Ogashawara I, Li L, Moreno-Madrinan MJ. Spatial-temporal assessment of environmental factors related to dengue outbreaks in São Paulo, Brazil[J]. Geohealth, 2019, 3(8): 202-217. DOI:10.1029/2019GH000186. [22] Pineda-Cortel MB, Clemente B, Nga PT. Modeling and predicting dengue fever cases in key regions of the Philippines using remote sensing data[J]. Asian Pac J Trop Med, 2019, 12(2): 60-66. DOI:10.4103/1995-7645.250838. [23] Francisco ME, Carvajal TM, Ryo M, et al. Dengue disease dynamics are modulated by the combined influences of precipitation and landscape: A machine learning approach[J]. Sci Total Environ, 2021, 792: 148406. DOI:10.1016/j.scitotenv.2021.148406. [24] Xavier LL, Honório NA, Pessanha JFM, et al. Analysis of climate factors and dengue incidence in the metropolitan region of Rio de Janeiro, Brazil[J]. PLoS One, 2021, 16(5): e0251403. DOI:10.1371/journal.pone.0251403. [25] Ao LJ, Zhang YQ, Xu H, et al. Assessing the contribution of meteorology to the spatio-temporal prediction model of dengue in Guangdong province[J]. Mod Prev Med, 2020, 47(16): 2899-2903. (in Chinese) 敖琳珺, 张昱勤, 许欢, 等. 评估气象对广东省登革热时空预测模型的贡献[J]. 现代预防医学, 2020, 47(16): 2899-2903. [26] Watts MJ, Kotsila P, Mortyn PG, et al. Influence of socio-economic, demographic and climate factors on the regional distribution of dengue in the United States and Mexico[J]. Int J Health Geogr, 2020, 19(1): 44. DOI:10.1186/s12942-020-00241-1. [27] Li CL, Wu XX, Wang XF, et al. Ecological environment and socioeconomic factors drive long-term transmission and extreme outbreak of dengue fever in epidemic region of China[J]. J Cleaner Prod, 2021, 279: 123870. DOI:10.1016/j.jclepro. 2020.123870. [28] Ren HY, Wu W, Li TG, et al. Urban villages as transfer stations for dengue fever epidemic: A case study in the Guangzhou, China[J]. PLoS Negl Trop Dis, 2019, 13(4): e0007350. DOI:10.1371/journal.pntd.0007350. [29] Wu PC, Lay JG, Guo HR, et al. Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan[J]. Sci Total Environ, 2009, 407(7): 2224-2233. DOI:10.1016/j.scitotenv.2008.11.034. [30] Wang X, Nishiura H. The epidemic risk of dengue fever in Japan: Climate change and seasonality[J]. Can J Infect Dis Med Microbiol, 2021, 2021: 6699788. DOI:10.1155/2021/6699788. [31] Mussumeci E, Coelho FC. Large-scale multivariate forecasting models for Dengue-LSTM versus random forest regression[J]. Spat Spatiotemporal Epidemiol, 2020, 35: 100372. DOI:10. 1016/j.sste.2020.100372. [32] Liu YQ, Liu XQ, Song WT, et al. Epidemiological analysis of dengue fever in Nanchang city, Jiangxi province from 2011 to 2019[J]. Mod Prev Med, 2021, 48(12): 2135-2138, 2154. (in Chinese) 刘仰青, 柳小青, 宋文涛, 等. 江西省南昌市2011-2019年登革热流行病学特征分析[J]. 现代预防医学, 2021, 48(12): 2135-2138, 2154. [33] Qi XP, Wang Y, Li Y, et al. The effects of socioeconomic and environmental factors on the incidence of dengue fever in the Pearl River Delta, China, 2013[J]. PLoS Negl Trop Dis, 2015, 9(10): e0004159. DOI:10.1371/journal.pntd.0004159. [34] Bouzid M, Colón-González FJ, Lung T, et al. Climate change and the emergence of vector-borne diseases in Europe: Case study of dengue fever[J]. BMC Public Health, 2014, 14: 781. DOI:10.1186/1471-2458-14-781. [35] Chen YB, Li WH, Huang YX, et al. Spatio-temporal spreading features and the influence factors of dengue fever in downtown Guangzhou[J]. Trop Geogr, 2016, 36(5): 767-775. DOI:10.13284/j.cnki.rddl.002881.(in Chinese) 陈业滨, 李卫红, 黄玉兴, 等. 广州市登革热时空传播特征及影响因素[J]. 热带地理, 2016, 36(5): 767-775. DOI:10.13284/j.cnki.rddl.002881. [36] Ong J, Liu X, Rajarethinam J, et al. Mapping dengue risk in Singapore using Random Forest[J]. PLoS Negl Trop Dis, 2018, 12(6): e0006587. DOI:10.1371/journal.pntd.0006587. [37] Guangzhou Overview[EB/OL]. [2023-02-10]. http://www.guangzhou.gov.cn/156080.shtml.(in Chinese) 中共广州市委宣传部.广州概述[EB/OL]. [2023-02-10]. http://www.guangzhou.gov.cn/156080.shtml. [38] Peng SZ, Ding YX, Liu WZ, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth Syst Sci Data, 2019, 11(4): 1931-1946. DOI:10.5194/essd-11-1931-2019. [39] USGS. MOD11A2 v006[EB/OL]. (2019-07-26) [2023-02-10]. https://lpdaac.usgs.gov/products/mod11a2v006/. [40] Du SJ, Du SH, Liu B, et al. Large-scale urban functional zone mapping by integrating remote sensing images and open social data[J]. GISci Remote Sens, 2020, 57(3): 411-430. DOI:10. 1080/15481603.2020.1724707. [41] Breiman L. Random Forests[J]. Mach Learn, 2001, 45(1): 5-32. DOI:10.1023/A:1010933404324. [42] Ren ZP, Zhu J, Gao YF, et al. Maternal exposure to ambient PM10 during pregnancy increases the risk of congenital heart defects: Evidence from machine learning models[J]. Sci Total Environ, 2018, 630: 1-10. DOI:10.1016/j.scitotenv.2018. 02.181. [43] Lunardon N, Menardi G, Torelli N. ROSE: A package for binary imbalanced learning[J]. R J, 2014, 6(1): 79-89. DOI:10. 32614/RJ-2014-008. [44] Ren ZP, Wang DQ, Ma AM, et al. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination[J]. Sci Rep, 2016, 6: 20604. DOI:10.1038/srep20604. [45] Sang SW, Liu QY. Spatial and temporal analysis of indigenous dengue cases in Guangdong province during 2003-2012[J]. Chin J Vector Biol Control, 2015, 26(5): 451-453. DOI:10.11853/j.issn.1003.4692.2015.05.005.(in Chinese) 桑少伟, 刘起勇. 广东省2003-2012年登革热本地病例时空分析[J]. 中国媒介生物学及控制杂志, 2015, 26(5): 451-453. DOI:10.11853/j.issn.1003.4692.2015.05.005. |