[1] Zhu W,Liu Y,Liu XY,et al. Trend in resistance to beta-cypermethrin in Aedes albopictus andpreliminary strategies of beta-cypermethrin use in Xuhui district,Shanghai[J]. Shanghai J Prev Med,2022,34(7):699-704. DOI:10.19428/j.cnki.sjpm.2022.21659.(in Chinese) 朱伟,刘曜,刘翔宇,等. 白纹伊蚊对高效氯氰菊酯的抗性变化趋势与用药策略的初步研究[J]. 上海预防医学,2022,34(7):699-704. DOI:10.19428/j.cnki.sjpm.2022.21659. [2] Yang P,Wang XW. Observation on the killing efficacy of the several pyrethroid insecticides against mosquitoes[J]. Chin J Hyg Insect Equip,2002,8(4):34-36. DOI:10.3969/j.issn.1671-2781.2002.04.013.(in Chinese) 杨苹,王鑫炜. 几种拟除虫菊酯杀虫剂灭蚊效果观察[J]. 中华卫生杀虫药械,2002,8(4):34-36. DOI:10.3969/j.issn.1671-2781.2002.04.013. [3] Fan SY,Shi XH,Chen J,et al. Effect of sublethal dose of mosquito densovirus infection on deltamethrin resistance of Aedes albopictus[J]. Chin J Vector Biol Control,2022,33(4):499-502. DOI:10.11853/j.issn.1003.8280.2022.04.011.(in Chinese) 范苏云,石向辉,陈建,等. 蚊浓核病毒亚致死剂量感染对白纹伊蚊溴氰菊酯抗药性的影响研究[J]. 中国媒介生物学及控制杂志,2022,33(4):499-502. DOI:10.11853/j.issn.1003. 8280.2022.04.011. [4] Lü J,Liu JH,Chen L,et al. Screening of brown planthopper resistant miRNAs in rice and their roles in regulation of brown planthopper fecundity[J]. Rice Sci,2022,29(6):559-568. DOI:10.1016/j.rsci.2022.05.003. [5] Stavast CJ,Erkeland SJ. The non-canonical aspects of microRNAs:Many roads to gene regulation[J]. Cells,2019,8(11):1465. DOI:10.3390/cells8111465. [6] Neshat SY,Tzeng SY,Green JJ. Gene delivery for immunoengineering[J]. Curr Opin Biotechnol,2020,66:1-10. DOI:10.1016/j.copbio.2020.05.008. [7] Moran Y,Agron M,Praher D,et al. The evolutionary origin of plant and animal microRNAs[J]. Nat Ecol Evol,2017,1(3):27. DOI:10.1038/s41559-016-0027. [8] Lucas KJ,Roy S,Ha JS,et al. MicroRNA-8 targets the wingless signaling pathway in the female mosquito fat body to regulate reproductive processes[J]. Proc Natl Acad Sci USA,2015,112(5):1440-1445. DOI:10.1073/pnas.1424408112. [9] Varghese J,Cohen SM. MicroRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila[J]. Genes Dev,2007,21(18):2277-2282. DOI:10.1101/gad.439807. [10] Liu XJ,Zhang HH,Li S,et al. Characterization of a midgut-specific chitin synthase gene (LmCHS2) responsible for biosynthesis of chitin of peritrophic matrix in Locusta migratoria[J]. Insect Biochem Mol Biol,2012,42(12):902-910. DOI:10.1016/j.ibmb.2012.09.002. [11] Zhao WJ,Liu P,Wu H,et al. Characterization and expression analysis of three chitinase genes,CqCht5-1,CqCht5-2, and CqCht5-3,in Culex quinquefasciatus[J]. Genomics Appl Biol,2021,40(2):563-568. DOI:10.13417/j.gab.040.000563.(in Chinese) 赵文静,刘萍,吴慧,等. 致倦库蚊三个几丁质酶基因CqCht5-1,CqCht5-2和CqCht5-3的分析和表达[J]. 基因组学与应用生物学,2021,40(2):563-568. DOI:10.13417/j.gab.040. 000563. [12] Liu XJ,Cooper AMW,Zhang JZ,et al. Biosynthesis,modifications and degradation of chitin in the formation and turnover of peritrophic matrix in insects[J]. J Insect Physiol,2019,114:109-115. DOI:10.1016/j.jinsphys.2019.03.006. [13] Merzendorfer H,Zimoch L. Chitin metabolism in insects:Structure,function and regulation of chitin synthases and chitinases[J]. J Exp Biol,2003,206(24):4393-4412. DOI:10.1242/jeb.00709. [14] Liu WJ,An S,Cheng P,et al. Whole-transcriptome profiling across different developmental stages of Aedes albopictus (Diptera:Culicidae) provides insights into chitin-related non-coding RNA and competing endogenous RNA networks[J]. Parasit Vectors,2023,16(1):33. DOI:10.1186/s13071-022-05648-2. [15] Zhang Q,Hua G,Adang MJ. Chitosan/DsiRNA nanoparticle targeting identifies AgCad1 cadherin in Anopheles gambiae larvae as an in vivo receptor of Cry11Ba toxin of Bacillus thuringiensis subsp. jegathesan[J]. Insect Biochem Mol Biol,2015,60:33-38. DOI:10.1016/j.ibmb.2015.03.001. [16] Arakane Y,Muthukrishnan S,Kramer KJ,et al. The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix[J]. Insect Mol Biol,2005,14(5):453-463. DOI:10.1111/j.1365-2583.2005.00576.x. [17] Chen WB,Yan WJ,Xu XL,et al. Preparation,characterization and in vitro sustained antioxidant activity of α-tocopherol-loaded chitosan nanoparticles[J]. Food Sci,2017,38(22):216-223. DOI:10.7506/spkx1002-6630-201722033.(in Chinese) 陈文彬,严文静,徐幸莲,等. α-生育酚壳聚糖纳米粒的制备、表征及体外缓释抗氧化性能[J]. 食品科学,2017,38(22):216-223. DOI:10.7506/spkx1002-6630-201722033. [18] Tariq K,Metzendorf C,Peng W,et al. miR-8-3p regulates mitoferrin in the testes of Bactrocera dorsalis to ensure normal spermatogenesis[J]. Sci Rep,2016,6:22565. DOI:10.1038/srep22565. [19] Kramer KJ,Koga D. Insect chitin:Physical state,synthesis,degradation and metabolic regulation[J]. Insect Biochem,1986,16(6):851-877. DOI:10.1016/0020-1790(86)90059-4. [20] Moussian B. Recent advances in understanding mechanisms of insect cuticle differentiation[J]. Insect Biochem Mol Biol,2010,40(5):363-375. DOI:10.1016/j.ibmb.2010.03.003. [21] Zhang X,Zhang J,Zhu KY. Chitosan/double‐stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae)[J]. Insect Mol Biol,2010,19(5):683-693. DOI:10.1111/j.1365-2583.2010.01029.x. [22] Chen J,Liang ZK,Liang YK,et al. Conserved microRNAs miR-8-5p and miR-2a-3p modulate chitin biosynthesis in response to 20-hydroxyecdysone signaling in the brown planthopper,Nilaparvata lugens[J]. Insect Biochem Mol Biol,2013,43(9):839-848. DOI:10.1016/j.ibmb.2013.06.002. [23] Chen J,Li T,Pang R. miR‐2703 regulates the chitin biosynthesis pathway by targeting Chitin synthase 1a in Nilaparvata lugens[J]. Insect Mol Biol,2020,29(1):38-47. DOI:10.1111/imb.12606. [24] Yang ML,Wang YL,Jiang F,et al. miR-71 and miR-263 jointly regulate target genes Chitin synthase and Chitinase to control locust molting[J]. PLoS Genet,2016,12(8):e1006257. DOI:10.1371/journal.pgen.1006257. |