中国媒介生物学及控制杂志 ›› 2023, Vol. 34 ›› Issue (4): 585-588.DOI: 10.11853/j.issn.1003.8280.2023.04.026
• 综述 • 上一篇
收稿日期:
2022-12-12
出版日期:
2023-08-20
发布日期:
2023-08-17
通讯作者:
程鹏
作者简介:
娄紫微,女,在读硕士,从事病原生物学研究,E-mail:louzw1030@163.com
基金资助:
Zi-wei LOU(), Hong-mei LIU, Peng CHENG()
Received:
2022-12-12
Online:
2023-08-20
Published:
2023-08-17
Contact:
Peng CHENG
Supported by:
摘要:
蚊媒病毒在全球广泛存在并造成宿主感染风险,引起了人类蚊媒传染病如登革热、寨卡病毒病等发病持续上升和播散,严重威胁全球公共卫生安全。此类病毒为适应人和媒介蚊虫2种不同的宿主环境,已经进化出众多复杂的互作机制,以实现其生存、繁衍与传播。该文对近年来媒介蚊虫促进病毒感染调控的机制研究进行了综述。
中图分类号:
娄紫微, 刘宏美, 程鹏. 媒介蚊虫促进病毒感染调控的机制研究进展[J]. 中国媒介生物学及控制杂志, 2023, 34(4): 585-588.
Zi-wei LOU, Hong-mei LIU, Peng CHENG. Research progress on regulatory mechanism of mosquito vectors promoting virus infection[J]. Chinese Journal of Vector Biology and Control, 2023, 34(4): 585-588.
1 |
Huang YJS, Higgs S, Vanlandingham DL. Emergence and re-emergence of mosquito-borne arboviruses[J]. Curr Opin Virol, 2019, 34, 104-109.
DOI |
2 |
Weaver SC, Barrett AD. Transmission cycles, host range, evolution and emergence of arboviral disease[J]. Nat Rev Microbiol, 2004, 2 (10):789-801.
DOI |
3 |
Cheng G, Liu Y, Wang PH, et al. Mosquito defense strategies against viral infection[J]. Trends Parasitol, 2016, 32 (3):177-186.
DOI |
4 |
Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue[J]. Nature, 2013, 496 (7446):504-507.
DOI |
5 |
Romo H, Papa A, Kading R, et al. Comparative vector competence of north American Culex pipiens and Cx. quinquefasciatus for African and European lineage 2 West Nile viruses[J]. Am J Trop Med Hyg, 2018, 98 (6):1863-1869.
DOI |
6 |
Huang ZJ, Kingsolver MB, Avadhanula V, et al. An antiviral role for antimicrobial peptides during the arthropod response to Alphavirus replication[J]. J Virol, 2013, 87 (8):4272-4280.
DOI |
7 |
Turtle L, Solomon T. Japanese encephalitis: The prospects for new treatments[J]. Nat Rev Neurol, 2018, 14 (5):298-313.
DOI |
8 |
Lee WS, Webster JA, Madzokere ET, et al. Mosquito antiviral defense mechanisms: A delicate balance between innate immunity and persistent viral infection[J]. Parasit Vectors, 2019, 12 (1):165.
DOI |
9 |
Zhao LM, Alto BW, Smartt CT, et al. Transcription profiling for defensins of Aedes aegypti (Diptera: Culicidae) during development and in response to infection with Chikungunya and Zika viruses[J]. J Med Entomol, 2018, 55 (1):78-89.
DOI |
10 |
Liu K, Xiao CG, Xi SM, et al. Mosquito defensins enhance Japanese encephalitis virus infection by facilitating virus adsorption and entry within the mosquito[J]. J Virol, 2020, 94 (21):e01164-20.
DOI |
11 |
Liu K, Hou FX, Wahaab A, et al. Mosquito defensin facilitates Japanese encephalitis virus infection by downregulating the C6/36 cell-surface antiviral protein HSC70B[J]. Vet Microbiol, 2021, 253, 108971.
DOI |
12 |
Zininga T, Ramatsui L, Shonhai A. Heat shock proteins as immunomodulants[J]. Molecules, 2018, 23 (11):2846.
DOI |
13 |
Pujhari S, Brustolin M, Macias VM, et al. Heat shock protein 70 (HSP70) mediates Zika virus entry, replication, and egress from host cells[J]. Emerg Microbes Infect, 2019, 8 (1):8-16.
DOI |
14 |
Ren JP, Ding TB, Zhang W, et al. Does Japanese encephalitis virus share the same cellular receptor with other mosquito-borne flaviviruses on the C6/36 mosquito cells?[J]. Virol J, 2007, 4, 83.
DOI |
15 |
Chuang CK, Yang TH, Chen TH, et al. Heat shock cognate protein 70 isoform D is required for clathrin-dependent endocytosis of Japanese encephalitis virus in C6/36 cells[J]. J Gen Virol, 2015, 96 (Pt 4):793-803.
DOI |
16 |
Ghosh A, Desai A, Ravi V, et al. Chikungunya virus interacts with heat shock cognate 70 protein to facilitate its entry into mosquito cell line[J]. Intervirology, 2018, 60 (6):247-262.
DOI |
17 |
Paingankar MS, Gokhale MD, Deobagkar DN. Dengue-2-virus-interacting polypeptides involved in mosquito cell infection[J]. Arch Virol, 2010, 155 (9):1453-1461.
DOI |
18 |
Lubkowska A, Pluta W, Strońska A, et al. Role of heat shock proteins (HSP70 and HSP90) in viral infection[J]. Int J Mol Sci, 2021, 22 (17):9366.
DOI |
19 |
毕英杰, 谢晶莹. 热休克蛋白90在抗病毒免疫中作用的研究进展[J]. 中国生物制品学杂志, 2019, 32 (12):1428-1432.
DOI |
Bi YJ, Xie JY. Progress in research on role of heat shock protein 90 in antiviral immunity[J]. Chin J Biologicals, 2019, 32 (12):1428-1432.
DOI |
|
20 |
Shang Q, Wu P, Huang HL, et al. Inhibition of heat shock protein 90 suppresses Bombyx mori nucleopolyhedrovirus replication in B. mori[J]. Insect Mol Biol, 2020, 29 (2):205-213.
DOI |
21 | 程功, 吴葩, Peng S, 等. 蚊肠道共生菌增强伊蚊对蚊媒病毒易感性[J]. 科学新闻, 2020, (2):74. |
Cheng G, Wu P, Peng S, et al. A gut commensal bacterium promotes mosquito permissiveness to arboviruses[J]. Sci News, 2020, (2):74. | |
22 |
Dennison NJ, Jupatanakul N, Dimopoulos G. The mosquito microbiota influences vector competence for human pathogens[J]. Curr Opin Insect Sci, 2014, 3, 6-13.
DOI |
23 |
Angleró-Rodríguez YI, Talyuli OAC, Blumberg BJ, et al. An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity[J]. eLife, 2017, 6, e28844.
DOI |
24 |
Wu P, Sun P, Nie KX, et al. A gut commensal bacterium promotes mosquito permissiveness to arboviruses[J]. Cell Host Microbe, 2019, 25 (1):101-112.e5.
DOI |
25 |
Caragata EP, Tikhe CV, Dimopoulos G. Curious entanglements: Interactions between mosquitoes, their microbiota, and arboviruses[J]. Curr Opin Virol, 2019, 37, 26-36.
DOI |
26 |
Liu K, Qian YJ, Jung YS, et al. mosGCTL-7, a C-type lectin protein, mediates Japanese encephalitis virus infection in mosquitoes[J]. J Virol, 2017, 91 (10):e01348-16.
DOI |
27 |
Liu Y, Zhang FC, Liu JY, et al. Transmission-blocking antibodies against mosquito C-type lectins for dengue prevention[J]. PLoS Pathog, 2014, 10 (2):e1003931.
DOI |
28 |
吴宇杰, 刘珊, 张溪, 等. 伊蚊C型凝集素mosGCTL-2是登革病毒感染相关的重要蛋白质(英文)[J]. 生物化学与生物物理进展, 2019, 46 (12):1187-1195.
DOI |
Wu YJ, Liu S, Zhang X, et al. C-type lectin protein mosGCTL-2 from Aedes aegypti is a novel factor for dengue virus infection[J]. Prog Biochem Biophys, 2019, 46 (12):1187-1195.
DOI |
|
29 |
Krishnan MN, Ng A, Sukumaran B, et al. RNA interference screen for human genes associated with West Nile virus infection[J]. Nature, 2008, 455 (7210):242-245.
DOI |
30 | 刘博宇, 李盼, 杨桂连. C型凝集素受体在寄生虫感染免疫调节中的作用[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33 (3):228-232. |
Liu BY, Li P, Yang GL. The immunomodulatory role of C-type lectin receptors in parasitic infection[J]. Chin J Parasitol Parasit Dis, 2015, 33 (3):228-232. | |
31 |
Su JX, Wang G, Li CX, et al. Screening for differentially expressed miRNAs in Aedes albopictus (Diptera: Culicidae) exposed to DENV-2 and their effect on replication of DENV-2 in C6/36 cells[J]. Parasit Vectors, 2019, 12 (1):44.
DOI |
32 |
Trobaugh DW, Klimstra WB. MicroRNA regulation of RNA virus replication and pathogenesis[J]. Trends Mol Med, 2017, 23 (1):80-93.
DOI |
33 |
Cai WJ, Pan YH, Cheng AC, et al. Regulatory role of host microRNAs in flaviviruses infection[J]. Front Microbiol, 2022, 13, 869441.
DOI |
34 |
Zhou YH, Liu YX, Yan H, et al. miR-281, an abundant midgut-specific miRNA of the vector mosquito Aedes albopictus enhances dengue virus replication[J]. Parasit Vectors, 2014, 7, 488.
DOI |
35 |
Su JX, Li CX, Zhang YM, et al. Identification of microRNAs expressed in the midgut of Aedes albopictus during dengue infection[J]. Parasit Vectors, 2017, 10 (1):63.
DOI |
36 |
Avila-Bonilla RG, Yocupicio-Monroy M, Marchat LA, et al. miR-927 has pro-viral effects during acute and persistent infection with dengue virus type 2 in C6/36 mosquito cells[J]. J Gen Virol, 2020, 101 (8):825-839.
DOI |
37 |
Avila-Bonilla RG, Yocupicio-Monroy M, Marchat LA, et al. Analysis of the miRNA profile in C6/36 cells persistently infected with dengue virus type 2[J]. Virus Res, 2017, 232, 139-151.
DOI |
38 |
Dubey SK, Shrinet J, Sunil S. Aedes aegypti microRNA, miR-2944b-5p interacts with 3'UTR of Chikungunya virus and cellular target vps-13 to regulate viral replication[J]. PLoS Negl Trop Dis, 2019, 13 (6):e0007429.
DOI |
39 |
Maharaj PD, Widen SG, Huang J, et al. Discovery of mosquito saliva microRNAs during CHIKV infection[J]. PLoS Negl Trop Dis, 2015, 9 (1):e0003386.
DOI |
40 |
Xu TL, Sun YW, Feng XY, et al. Development of miRNA-based approaches to explore the interruption of mosquito-borne disease transmission[J]. Front Cell Infect Microbiol, 2021, 11, 665444.
DOI |
41 |
Sun P, Nie KX, Zhu YB, et al. A mosquito salivary protein promotes flavivirus transmission by activation of autophagy[J]. Nat Commun, 2020, 11 (1):260.
DOI |
42 |
王朝阳, 陈小芳, 程功. 媒介蚊虫唾液蛋白调控蚊媒病毒传播的研究进展[J]. 中国媒介生物学及控制杂志, 2021, 32 (6):653-659.
DOI |
Wang CY, Chen XF, Cheng G. Research progress on the regulation of mosquito-borne virus transmission by mosquito salivary proteins[J]. Chin J Vector Biol Control, 2021, 32 (6):653-659.
DOI |
|
43 |
Valenzuela-Leon PC, Shrivastava G, Martin-Martin I, et al. Multiple salivary proteins from Aedes aegypti mosquito bind to the Zika virus envelope protein[J]. Viruses, 2022, 14 (2):221.
DOI |
44 |
Wichit S, Diop F, Hamel R, et al. Aedes aegypti saliva enhances Chikungunya virus replication in human skin fibroblasts via inhibition of the type Ⅰ interferon signaling pathway[J]. Infect Genet Evol, 2017, 55, 68-70.
DOI |
45 |
Sri-In C, Weng SC, Chen WY, et al. A salivary protein of Aedes aegypti promotes dengue-2 virus replication and transmission[J]. Insect Biochem Mol Biol, 2019, 111, 103181.
DOI |
[1] | 马丽华, 韩晓莉, 高文, 王喜明, 赵勇, 宋纪文. 河北省2011-2022年成蚊生态学监测结果分析[J]. 中国媒介生物学及控制杂志, 2023, 34(4): 508-512,547. |
[2] | 刘全超, 朱丁, 邹亚明, 兰策介, 金辉. 江苏省无锡市2012-2021年蚊虫生态学监测结果分析[J]. 中国媒介生物学及控制杂志, 2023, 34(4): 513-517. |
[3] | 地里努尔·帕尔汗德, 郑小英, 吴忠道, 潘文杰, 张东京. 蚊虫肠道微生物在辐照不育技术中的应用前景[J]. 中国媒介生物学及控制杂志, 2023, 34(4): 579-584. |
[4] | 金彬彬, 韦凌娅, 曹阳, 邵汉文, 王英红, 孔庆鑫. 杭州市2017-2021年蚊虫种群密度与季节消长监测结果分析[J]. 中国媒介生物学及控制杂志, 2023, 34(3): 351-355. |
[5] | 王蓉, 刘起勇, 陆涛, 张宪青, 马永成, 郭玉红, 马斌忠, 刘桂香, 蒋明霞, 程晓兰. 青海省黄河流域人居环境蚊类物种组成及空间分布特征[J]. 中国媒介生物学及控制杂志, 2023, 34(3): 389-393. |
[6] | 田鹏, 孙晓东, 段凯霞, 徐艳春, 周耀武, 郭祥瑞, 李仕刚, 林祖锐. 缅甸拉咱市2018年蚊类和按蚊疟原虫子孢子感染调查[J]. 中国媒介生物学及控制杂志, 2023, 34(3): 412-416. |
[7] | 姜宁, 马雅军, 白洁, 彭恒. 蚊媒携带病毒现场检测方法研发趋势探讨[J]. 中国媒介生物学及控制杂志, 2023, 34(3): 422-427. |
[8] | 邓惠, 刘礼平, 高可, 段金花, 陈宗晶, 芦瑞鹏, 沈秀婷, 阴伟雄, 秦冰, 吴军, 林立丰. BG-home诱蚊器对常见蚊虫诱捕效果的实验测定及评价研究[J]. 中国媒介生物学及控制杂志, 2022, 33(6): 776-780. |
[9] | 郭旭东, 赵荣涛, 袁正泉, 徐路, 王申, 刘羽, 杨振洲, 石华. 基于无人机的捕虫装备设计与应用初探[J]. 中国媒介生物学及控制杂志, 2022, 33(6): 865-868. |
[10] | 李炳辉, 刘砚涛, 马小芳, 王伟, 宋富成, 孙庚晓, 姜洪荣, 付齐齐. 媒介蚊虫季节消长趋势分析方法的探讨与比较[J]. 中国媒介生物学及控制杂志, 2022, 33(6): 869-872. |
[11] | 陈红, 单宁, 周毅彬. 上海市静安区冬季地下车库蚊虫孳生影响因素研究[J]. 中国媒介生物学及控制杂志, 2022, 33(5): 710-714. |
[12] | 臧传慧, 公茂庆, 刘宏美. 蚊虫肠道微生物多样性及其功能的研究进展[J]. 中国媒介生物学及控制杂志, 2022, 33(4): 608-612. |
[13] | 王巧燕, 王韶华, 武峥嵘, 钟培松, 冷培恩. 上海市嘉定区2018-2020年成蚊生态学监测研究[J]. 中国媒介生物学及控制杂志, 2022, 33(3): 346-350. |
[14] | 李希尚, 王加志, 李胜国, 汤宗艳, 杨东海, 尹授钦, 王兴娟, 李增助, 蔡文斌. 云南省腾冲市城区2018-2020年蚊虫调查分析[J]. 中国媒介生物学及控制杂志, 2022, 33(3): 356-359. |
[15] | 李炳辉, 朱海龙, 马小芳, 王伟, 宋富成, 姜洪荣, 孙钦同, 付齐齐. 基于集中度和圆形分布法分析山东省青岛市2017-2020年媒介蚊虫季节性特征[J]. 中国媒介生物学及控制杂志, 2022, 33(2): 230-233. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
中国媒介生物学及控制杂志 © 2021 版权所有
地址:北京昌平区昌百路155号 电话:010-58900731
Email:bingmei@icdc.cn
网址:http://www.bmsw.net.cn
技术支持:010-62662699
总访问:
今日访问:
当前在线: