1 |
Tolle MA. Mosquito-borne diseases[J]. Curr Probl Pediatr Adolesc Health Care, 2009, 39 (4):97-140.
DOI
|
2 |
Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue[J]. Nature, 2013, 496 (7446):504-507.
DOI
|
3 |
World Health Organization. World malaria report 2021[R]. Geneva: World Health Organization, 2021.
|
4 |
World Health Organization. Mosquito sterilization offers new opportunity to control chikungunya, dengue, and Zika[EB/OL]. (2019-11-14)[2022-04-26]. https://www.who.int/news/item/14-11-2019-mosquito-sterilization-offers-new-opportunity-to-control-chikungunya-dengue-and-zika.
|
5 |
阿诺德·戴克, 乔治·亨德里克斯, 阿兰·鲁宾逊. 昆虫不育技术: 原理及在大面积害虫综合治理中的应用[M]. 路大光, 译. 北京: 中国农业科学技术出版社, 2010: 20-65.
|
|
Dyck VA, Hendrichs J, Robinson AS. Sterile insect technique: Principles and practice in area-wide integrated pest management[M]. Lu DG, trans. Beijing: China Agricultural Science and Technology Press, 2010: 20-65. (in Chinese)
|
6 |
Vreysen MJB, Abd-Alla AMM, Bourtzis K, et al. The insect pest control laboratory of the joint FAO/IAEA Programme: Ten years (2010-2020) of research and development, achievements and challenges in support of the sterile insect technique[J]. Insects, 2021, 12 (4):346.
DOI
|
7 |
Zhang DJ, Lees RS, Xi ZY, et al. Combining the sterile insect technique with the incompatible insect technique: Ⅲ-robust mating competitiveness of irradiated triple Wolbachia-infected Aedes albopictus males under semi-field conditions[J]. PLoS One, 2016, 11 (3):e0151864.
DOI
|
8 |
李姣, 肖铁光, 周社文. 桔小实蝇及其SIT防治技术应用研究进展[J]. 作物研究, 2007, 21 (2):145-148.
DOI
|
|
Li J, Xiao TG, Zhou SW. Progress on Bactrocera dorsalis and application of SIT[J]. Crop Res, 2007, 21 (2):145-148.
DOI
|
9 |
Pusey PL. Biological control agents for fire blight of apple compared under conditions limiting natural dispersal[J]. Plant Dis, 2002, 86 (6):639-644.
DOI
|
10 |
Egert M, Wagner B, Lemke T, et al. Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae)[J]. Appl Environ Microb, 2003, 69 (11):6659-6668.
DOI
|
11 |
Lemke T, Stingl U, Egert M, et al. Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae)[J]. Appl Environ Microb, 2003, 69 (11):6650-6658.
DOI
|
12 |
Tsuchida T, Koga R, Horikawa M, et al. Symbiotic bacterium modifies Aphid body color[J]. Science, 2010, 330 (6007):1102-1104.
DOI
|
13 |
Tamburini E, Perito B, Mastromei G. Growth phase-dependent expression of an endoglucanase encoding gene (eglS) in Streptomyces rochei A2[J]. FEMS Microbiol Lett, 2004, 237 (2):267-272.
DOI
|
14 |
刘婧, 陈丹, 庄桂芬, 等. 家蝇发育过程中肠道可培养共生细菌的分离与鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35 (2):120-124.
|
|
Liu J, Chen D, Zhuang GF, et al. Isolation and identification of cultivable symbiotic bacteria from the intestinal tract of Musca domestica during development[J]. Chin J Parasitol Parasit Dis, 2017, 35 (2):120-124.
|
15 |
Shi ZH, Wang LL, Zhang HY. Low diversity bacterial community and the trapping activity of metabolites from cultivable bacteria species in the female reproductive system of the oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae)[J]. Int J Mol Sci, 2012, 13 (5):6266-6278.
DOI
|
16 |
Wang HX, Jin L, Peng T, et al. Identification of cultivable bacteria in the intestinal tract of Bactrocera dorsalis from three different populations and determination of their attractive potential[J]. Pest Manag Sci, 2014, 70 (1):80-87.
DOI
|
17 |
Dillon RJ, Vennard CT, Buckling A, et al. Diversity of locust gut bacteria protects against pathogen invasion[J]. Ecol Lett, 2005, 8 (12):1291-1298.
DOI
|
18 |
Dickson LB, Jiolle D, Minard G, et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector[J]. Sci Adv, 2017, 3 (8):e1700585.
DOI
|
19 |
Coon KL, Brown MR, Strand MR. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats[J]. Mol Ecol, 2016, 25 (22):5806-5826.
DOI
|
20 |
Thongsripong P, Chandler JA, Green AB, et al. Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases[J]. Ecol Evol, 2018, 8 (2):1352-1368.
DOI
|
21 |
Raharimalala FN, Boukraa S, Bawin T, et al. Bacterial diversity of field-caught mosquitoes from different regions of Belgium and potential impact on virus transmission[C]//Proceedings of the 7th EPIZONE Annual Meeting "Nothing permanent, except change". Bruxelles, Belgium, 2013: 196.
|
22 |
Bando H, Okado K, Guelbeogo WM, et al. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity[J]. Sci Rep, 2013, 3, 1641.
DOI
|
23 |
Wu P, Sun P, Nie KX, et al. A gut commensal bacterium promotes mosquito permissiveness to arboviruses[J]. Cell Host Microbe, 2019, 25 (1):101-112.e5.
DOI
|
24 |
童良琴, 蔡珍, 肖小平, 等. 一种导致伊蚊死亡的色素细菌的发现及致死机制的研究[J]. 中国科学: 生命科学, 2021, 51 (1):83-90.
DOI
|
|
Tong LQ, Cai Z, Xiao XP, et al. Discovery and mechanistic study of an Aedes aegypti lethal bacteria Chromobacterium[J]. Sci Sin Vitae, 2021, 51 (1):83-90.
DOI
|
25 |
Saraiva RG, Fang JR, Kang S, et al. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein[J]. PLoS Negl Trop Dis, 2018, 12 (4):e0006443.
DOI
|
26 |
Pan XL, Zhou GL, Wu JH, et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the toll pathway to control dengue virus in the mosquito Aedes aegypti[J]. Proc Natl Acad Sci USA, 2011, 109 (1):E23-E31.
DOI
|
27 |
孙佩璐, 崔春来, 宋红生, 等. 斯氏按蚊中Toll受体参与抵抗微生物感染和调控肠道菌群稳态[J]. 昆虫学报, 2019, 62 (8):937-947.
DOI
|
|
Sun PL, Cui CL, Song HS, et al. Toll receptors are involved in anti-microbial response and gut microbiota homeostasis in the malaria vector Anopheles stephensi (Diptera: Culicidae)[J]. Acta Entomol Sin, 2019, 62 (8):937-947.
DOI
|
28 |
Qu S, Wang SB. Interaction of entomopathogenic fungi with the host immune system[J]. Dev Comp Immunol, 2018, 83, 96-103.
DOI
|
29 |
Angleró-Rodríguez YI, Talyuli OAC, Blumberg BJ, et al. An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity[J]. Elife, 2017, 6, e28844.
DOI
|
30 |
Terenius O, Lindh JM, Eriksson GK, et al. Midgut bacterial dynamics in Aedes aegypti[J]. FEMS Microbiol Ecol, 2012, 80 (3):556-565.
DOI
|
31 |
Zouache K, Raharimalala FN, Raquin V, et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Ae. aegypti, from different geographic regions of Madagascar[J]. FEMS Microbiol Ecol, 2011, 75 (3):377-389.
DOI
|
32 |
Moncayo AC, Lerdthusnee K, Leon R, et al. Meconial peritrophic matrix structure, formation, and meconial degeneration in mosquito pupae/pharate adults: Histological and ultrastructural aspects[J]. J Med Entomol, 2005, 42 (6):939-944.
DOI
|
33 |
Moll RM, Romoser WS, Modrakowski MC, et al. Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis[J]. J Med Entomol, 2001, 38 (1):29-32.
DOI
|
34 |
Osei-Poku J, Mbogo CM, Palmer WJ, et al. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya[J]. Mol Ecol, 2012, 21 (20):5138-5150.
DOI
|
35 |
Travanty NV, Apperson CS, Ponnusamy L. A diverse microbial community supports larval development and survivorship of the Asian tiger mosquito (Diptera: Culicidae)[J]. J Med Entomol, 2019, 56 (3):632-640.
DOI
|
36 |
Vavricka CJ, Han Q, Mehere P, et al. Tyrosine metabolic enzymes from insects and mammals: A comparative perspective[J]. Insect Sci, 2014, 21 (1):13-19.
DOI
|
37 |
Augustinos AA, Kyritsis GA, Papadopoulos NT, et al. Exploitation of the medfly gut microbiota for the enhancement of sterile insect technique: Use of Enterobacter sp. in larval diet-based probiotic applications[J]. PLoS One, 2015, 10 (9):e0136459.
DOI
|
38 |
蔡朝辉. 橘小实蝇肠道微生物对其生长发育及辐射源损伤修复的功能研究[D]. 武汉: 华中农业大学, 2020.
|
|
Cai ZH. The effects of gut microbiota on the growth and the repair of irradiated damage in Bactrocera dorsalis[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese)
|
39 |
Msaad GM, Charaabi K, Hamden H, et al. Probiotic based-diet effect on the immune response and induced stress in irradiated mass reared Ceratitis capitata males (Diptera: Tephritidae) destined for the release in the sterile insect technique programs[J]. PLoS One, 2021, 16 (9):e0257097.
DOI
|
40 |
Dale C. Evolution: Weevils get tough on symbiotic tyrosine[J]. Curr Biol, 2017, 27 (23):R1282-R1284.
DOI
|
41 |
Zhang DJ, Chen S, Abd-Alla AMM, et al. The effect of radiation on the gut bacteriome of Aedes albopictus[J]. Front Microbiol, 2021, 12, 671699.
DOI
|
42 |
Mancini MV, Damiani C, Accoti A, et al. Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing[J]. BMC Microbiol, 2018, 18 (1):126.
DOI
|
43 |
Shuttleworth LA, Khan MAM, Osborne T, et al. A walk on the wild side: Gut bacteria fed to mass-reared larvae of Queensland fruit fly [Bactrocera tryoni (Froggatt)] influence development[J]. BMC Biotechnol, 2019, 19 Suppl 2 (95)
DOI
|