中国媒介生物学及控制杂志 ›› 2023, Vol. 34 ›› Issue (4): 575-578.DOI: 10.11853/j.issn.1003.8280.2023.04.024
收稿日期:
2023-02-17
出版日期:
2023-08-20
发布日期:
2023-08-17
通讯作者:
王鑫
作者简介:
张芃,女,在读硕士,主要从事病原生物学研究,E-mail:1064226260@qq.com
基金资助:
Peng ZHANG(), Huai-qi JING, Xin WANG()
Received:
2023-02-17
Online:
2023-08-20
Published:
2023-08-17
Contact:
Xin WANG
Supported by:
摘要:
鼠疫耶尔森菌、小肠结肠炎耶尔森菌、假结核耶尔森菌均为致病性耶尔森菌,它们的感染均会引起严重的临床症状,曾对人类的生产生活造成过严重影响,且目前已在各种生物样本、环境样本中发现。因此,高效准确地检测这3种致病性耶尔森菌显得尤为重要。该文从免疫学、分子生物学、噬菌体检测等方面综述了近年来致病性耶尔森菌检测技术的研究进展。
中图分类号:
张芃, 景怀琦, 王鑫. 致病性耶尔森菌检测技术研究进展[J]. 中国媒介生物学及控制杂志, 2023, 34(4): 575-578.
Peng ZHANG, Huai-qi JING, Xin WANG. Research progress in detection techniques for pathogenic Yersinia species[J]. Chinese Journal of Vector Biology and Control, 2023, 34(4): 575-578.
1 |
Savin C, Criscuolo A, Guglielmini J, et al. Genus-wide Yersinia core-genome multilocus sequence typing for species identification and strain characterization[J]. Microb Genom, 2019, 5 (10):e000301.
DOI |
2 |
Lemarignier M, Pizarro-Cerdá J. Autophagy and intracellular membrane trafficking subversion by pathogenic Yersinia species[J]. Biomolecules, 2020, 10 (12):1637.
DOI |
3 |
Wu YR, Hao TY, Qian XW, et al. Small insertions and deletions drive genomic plasticity during adaptive evolution of Yersinia pestis[J]. Microbiol Spectr, 2022, 10 (3):e0224221.
DOI |
4 |
Platt-Samoraj A, Żmudzki J, Pajdak-Czaus J, et al. The prevalence of Yersinia enterocolitica and Y. pseudotuberculosis in small wild rodents in Poland[J]. Vector Borne Zoonotic Dis, 2020, 20 (8):586-592.
DOI |
5 |
Chanteau S, Rahalison L, Ralafiarisoa L, et al. Development and testing of a rapid diagnostic test for bubonic and pneumonic plague[J]. Lancet, 2003, 361 (9353):211-216.
DOI |
6 |
Rajerison M, Melocco M, Andrianaivoarimanana V, et al. Performance of plague rapid diagnostic test compared to bacteriology: A retrospective analysis of the data collected in Madagascar[J]. BMC Infect Dis, 2020, 20 (1):90.
DOI |
7 |
Hau D, Wade B, Lovejoy C, et al. Development of a dual antigen lateral flow immunoassay for detecting Yersinia pestis[J]. PLoS Negl Trop Dis, 2022, 16 (3):e0010287.
DOI |
8 |
Simon S, Demeure C, Lamourette P, et al. Fast and simple detection of Yersinia pestis applicable to field investigation of plague foci[J]. PLoS One, 2013, 8 (1):e54947.
DOI |
9 |
Jullien S, Dissanayake HA, Chaplin M. Rapid diagnostic tests for plague[J]. Cochrane Database Syst Rev, 2020, 6 (6):CD013459.
DOI |
10 |
Estrada CS, Velázquez Ldel C, Favier GI, et al. Detection of Yersinia spp. in meat products by enrichment culture, immunomagnetic separation and nested PCR[J]. Food Microbiol, 2012, 30 (1):157-163.
DOI |
11 |
Wielkoszynski T, Moghaddam A, Bäckman A, et al. Novel diagnostic ELISA test for discrimination between infections with Yersinia enterocolitica and Y. pseudotuberculosis[J]. Eur J Clin Microbiol Infect Dis, 2018, 37 (12):2301-2306.
DOI |
12 |
Thoerner P, Bin Kingombe CI, Bögli-Stuber K, et al. PCR detection of virulence genes in Yersinia enterocolitica and Y. pseudotuberculosis and investigation of virulence gene distribution[J]. Appl Environ Microbiol, 2003, 69 (3):1810-1816.
DOI |
13 |
Bui TH, Ikeuchi S, O'Brien YS, et al. Multiplex PCR method for differentiating highly pathogenic Yersinia enterocolitica and low pathogenic Y. enterocolitica, and Y. pseudotuberculosis[J]. J Vet Med Sci, 2021, 83 (12):1982-1987.
DOI |
14 |
Lambertz ST, Nilsson C, Hallanvuo S, et al. Real-time PCR method for detection of pathogenic Yersinia enterocolitica in food[J]. Appl Environ Microbiol, 2008, 74 (19):6060-6067.
DOI |
15 |
Matero P, Pasanen T, Laukkanen R, et al. Real-time multiplex PCR assay for detection of Yersinia pestis and Y. pseudotuberculosis[J]. APMIS, 2009, 117 (1):34-44.
DOI |
16 |
Sidstedt M, Rådström P, Hedman J. PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions[J]. Anal Bioanal Chem, 2020, 412 (9):2009-2023.
DOI |
17 |
Cristiano D, Peruzy MF, Aponte M, et al. Comparison of droplet digital PCR vs real-time PCR for Yersinia enterocolitica detection in vegetables[J]. Int J Food Microbiol, 2021, 354, 109321.
DOI |
18 |
Wang M, Yang JJ, Gai ZT, et al. Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk[J]. Int J Food Microbiol, 2018, 266, 251-256.
DOI |
19 |
Li J, Macdonald J. Advances in isothermal amplification: Novel strategies inspired by biological processes[J]. Biosens Bioelectron, 2015, 64, 196-211.
DOI |
20 |
Horisaka T, Fujita K, Iwata T, et al. Sensitive and specific detection of Yersinia pseudotuberculosis by loop-mediated isothermal amplification[J]. J Clin Microbiol, 2004, 42 (11):5349-5352.
DOI |
21 |
Zhang JH, Zhu J, Ren H, et al. Rapid visual detection of highly pathogenic Streptococcus suis serotype 2 isolates by use of loop-mediated isothermal amplification[J]. J Clin Microbiol, 2013, 51 (10):3250-3256.
DOI |
22 |
Zhang HW, Feng JS, Xue R, et al. Loop-mediated isothermal amplification assays for detecting Yersinia pseudotuberculosis in milk powders[J]. J Food Sci, 2014, 79 (5):M967-M971.
DOI |
23 |
Bai Y, Rizzo MR, Parise C, et al. A novel loop-mediated isothermal amplification assay for rapid detection of Yersinia pestis[J]. Front Microbiol, 2022, 13, 863142.
DOI |
24 |
Ofir G, Sorek R. Contemporary phage biology: From classic models to new insights[J]. Cell, 2018, 172 (6):1260-1270.
DOI |
25 |
Sozhamannan S, Hofmann ER. The state of the art in biodefense related bacterial pathogen detection using bacteriophages: How it started and how it's going[J]. Viruses, 2020, 12 (12):1393.
DOI |
26 |
Zhao XN, Cui YJ, Yan YF, et al. Outer membrane proteins ail and OmpF of Yersinia pestis are involved in the adsorption of T7-related bacteriophage Yep-phi[J]. J Virol, 2013, 87 (22):12260-12269.
DOI |
27 |
Sergueev KV, He YX, Borschel RH, et al. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR[J]. PLoS One, 2010, 5 (6):e11337.
DOI |
28 |
Yang QL, Deng SS, Xu JJ, et al. Poly(indole-5-carboxylic acid)/reduced graphene oxide/gold nanoparticles/phage-based electrochemical biosensor for highly specific detection of Yersinia pseudotuberculosis[J]. Microchim Acta, 2021, 188 (4):107.
DOI |
29 | Leon-Velarde CG. The application of bacteriophage host recognition binding proteins for the isolation of Yersinia enterocolitica in foods[D]. Guelph: University of Guelph, 2017. |
30 |
Shoaib M, Shehzad A, Raza H, et al. A comprehensive review on the prevalence, pathogenesis and detection of Yersinia enterocolitica[J]. RSC Adv, 2019, 9 (70):41010-41021.
DOI |
31 |
Ayyadurai S, Flaudrops C, Raoult D, et al. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry[J]. BMC Microbiol, 2010, 10, 285.
DOI |
32 |
Chen G, Lyu Y, Wang DS, et al. Obtaining specific sequence tags for Yersinia pestis and visually detecting them using the CRISPR-Cas12a system[J]. Pathogens, 2021, 10 (5):562.
DOI |
33 |
You Y, Zhang PP, Wu GS, et al. Highly specific and sensitive detection of Yersinia pestis by portable Cas12a-UPTLFA platform[J]. Front Microbiol, 2021, 12, 700016.
DOI |
34 |
Fredriksson-Ahomaa M, Korkeala H. Low occurrence of pathogenic Yersinia enterocolitica in clinical, food, and environmental samples: A methodological problem[J]. Clin Microbiol Rev, 2003, 16 (2):220-229.
DOI |
35 |
Eisen RJ, Petersen JM, Higgins CL, et al. Persistence of Yersinia pestis in soil under natural conditions[J]. Emerg Infect Dis, 2008, 14 (6):941-943.
DOI |
36 |
Torosian SD, Regan PM, Taylor MA, et al. Detection of Yersinia pestis over time in seeded bottled water samples by cultivation on heart infusion agar[J]. Can J Microbiol, 2009, 55 (9):1125-1129.
DOI |
37 |
Duan R, Liang JR, Zhang J, et al. Prevalence of Yersinia enterocolitica bioserotype 3/O∶3 among children with diarrhea, China, 2010-2015[J]. Emerg Infect Dis, 2017, 23 (9):1502-1509.
DOI |
[1] | 李胜, 靳娟, 何建, 张琪, 杨晓艳, 辛有全, 赵海红, 张晓璐, 柏吉祥, 代瑞霞. 应用TaqMan-MGB探针RT-qPCR技术对青海省海南州鼠疫菌耐链霉素rpsL基因突变位点的检测[J]. 中国媒介生物学及控制杂志, 2023, 34(3): 331-335. |
[2] | 刘丹, 李晓娜, 乌兰图雅, 樊红霞, 帖卫芳, 马宇星, 梅步俊, 殷旭红, 曹民治, 高娃. 内蒙古自治区大兴安岭林区游离蜱及其疏螺旋体调查[J]. 中国媒介生物学及控制杂志, 2023, 34(3): 394-399. |
[3] | 姜宁, 马雅军, 白洁, 彭恒. 蚊媒携带病毒现场检测方法研发趋势探讨[J]. 中国媒介生物学及控制杂志, 2023, 34(3): 422-427. |
[4] | 牛艳芬, 周松, 刘广, 刘晓伟, 张懿晖, 王海峰, 段然, 王鑫, 杨晓燕, 杜越聪, 王汐, 赵升, 金春霞, 杜国义, 史献明, 崔耀仁, 闫萍. 河北省鼠疫自然疫源地小肠结肠炎耶尔森菌和假结核耶尔森菌的调查研究[J]. 中国媒介生物学及控制杂志, 2023, 34(1): 91-93. |
[5] | 陈旭辉, 谭启龙, 舒纪为, 叶凌, 李世波, 王秋景. 浙江省岱山县一起肾综合征出血热疫情汉坦病毒分子流行病学分析[J]. 中国媒介生物学及控制杂志, 2022, 33(5): 706-709. |
[6] | 王晗, 曹淦, 孙刚, 杨晓, 田诚. 我国常见蜱传疾病的流行特征和检测方法研究进展[J]. 中国媒介生物学及控制杂志, 2022, 33(5): 765-770. |
[7] | 李博, 崔燕, 刘遵季, 古丽阿依·包凯西, 罗勇军, 麦迪娜·肖开提, 王启果, 雒涛. 新疆鼠疫菌株多位点可变数目串联重复序列基因分型研究[J]. 中国媒介生物学及控制杂志, 2021, 32(6): 666-671. |
[8] | 杨小娜, 张琳, 侯学霞, 郝琴. 16S rDNA全长高通量测序在蜱媒病原生物多样性研究中的应用[J]. 中国媒介生物学及控制杂志, 2021, 32(4): 404-411. |
[9] | 袁媛, 孙永, 常宏伟, 陈晓龙, 撒楠, 高大维, 苏斌. 安徽省2018-2019年小肠结肠炎耶尔森菌分型分布及分子特征分析[J]. 中国媒介生物学及控制杂志, 2021, 32(3): 298-301. |
[10] | 薛志静, 赵宁, 王君, 宋秀平, 孟凤霞, 梁文琴, 周敬祝, 王丹, 张忠, 刘起勇. 蚊媒甲病毒属病毒半巢式PCR方法的建立及应用[J]. 中国媒介生物学及控制杂志, 2021, 32(2): 132-138. |
[11] | 王海峰, 陈永明, 周松, 牛艳芬, 杨晓燕, 张懿晖, 刘广, 杜国义, 刘合智, 史献明. 成簇的规律间隔短回文重复序列技术在鼠疫菌基因分型中的应用[J]. 中国媒介生物学及控制杂志, 2021, 32(1): 30-33. |
[12] | 张爱萍, 马丽, 谢辉, 杨旭欣, 薛红梅, 赵志军, 李积权, 于守鸿, 赵忠智, 徐立青. SYBR GreenⅠ荧光定量PCR在布鲁氏菌快速检测中的应用研究[J]. 中国媒介生物学及控制杂志, 2020, 31(6): 695-698. |
[13] | 李存香, 张青雯, 辛有全, 祁芝珍, 金星, 冯建萍, 李胜, 吴海莲, 赵海红, 代瑞霞. 携带噬菌体的鼠疫耶尔森菌菌落形态研究[J]. 中国媒介生物学及控制杂志, 2020, 31(6): 699-701. |
[14] | 李胜, 何建, 杨晓艳, 辛有全, 靳娟, 张琪, 柏吉祥, 杨汉青, 吴海莲, 代瑞霞. 甘肃省鼠疫耶尔森菌对11种抗菌药物体外抑菌活性研究[J]. 中国媒介生物学及控制杂志, 2020, 31(5): 536-539. |
[15] | 潘珠, 梁秋光, 岑清泉, 黄济英, 陈冠森, 杨柳, 杨华源. 3种致病性耶尔森菌对宿主鼠的交叉免疫反应研究[J]. 中国媒介生物学及控制杂志, 2020, 31(5): 540-544. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
中国媒介生物学及控制杂志 © 2021 版权所有
地址:北京昌平区昌百路155号 电话:010-58900731
Email:bingmei@icdc.cn
网址:http://www.bmsw.net.cn
技术支持:010-62662699
总访问:
今日访问:
当前在线: