[1] Paupy C,Ollomo B,Kamgang B,et al. Comparative role of Aedes albopictus and Ae. aegypti in the emergence of dengue and Chikungunya in central Africa[J]. Vector Borne Zoonotic Dis,2010,10(3):259-266. DOI:10.1089/vbz.2009.0005. [2] Su XH,Guo YJ,Deng JL,et al. Fast emerging insecticide resistance in Aedes albopictus in Guangzhou,China:Alarm to the dengue epidemic[J]. PLoS Negl Trop Dis,2019,16,13(9):e0007665. DOI:10.1371/journal.pntd.0007665. [3] 孟凤霞,王义冠,冯磊,等. 我国登革热疫情防控与媒介伊蚊的综合治理[J]. 中国媒介生物学及控制杂志,2015,26(1):4-10. DOI:10.11853/j.issn.1003.4692.2015.01.002.Meng FX,Wang YG,Feng L,et al. Review on dengue prevention and control and integrated mosquito management in China[J]. Chin J Vector Biol Control,2015,26(1):4-10. DOI:10.11853/j.issn.1003.4692.2015.01.002.(in Chinese) [4] 陈澄宇,史雪岩,髙希武. 昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究进展[J]. 农药学学报,2016,18(5):545-555. DOI:10.16801/j.issn.1008-7303.2016.0078.Chen CY,Shi XY,Gao XW. Mechanism of insect metabolic resistance to pyrethroid insecticides[J]. Chin J Pestic Sci,2016,18(5):545-555. DOI:10.16801/j.issn.1008-7303.2016.0078.(in Chinese) [5] 王以燕,姜志宽. 我国公共卫生用农药的发展及应用概况[J]. 中国媒介生物学及控制杂志,2016,27(5):421-425. DOI:10.11853/j.issn.1003.8280.2016.05.001.Wang YY,Jiang ZK. Development and application of public health pesticides in China,2013-2016[J]. Chin J Vector Biol Control,2016,27(5):421-425. DOI:10.11853/j.issn.1003. 8280.2016.05.001.(in Chinese) [6] 赵春春,周欣欣,李文玉,等. 2020年中国13省份登革热媒介白纹伊蚊抗药性监测及分析研究[J]. 中国媒介生物学及控制杂志,2022,33(1):30-37. DOI:10.11853/j.issn.1003.8280. 2022.01.006.Zhao CC,Zhou XX,Li WY,et al. Insecticide resistance surveillance and characteristic analysis of dengue vector Aedes albopictus in 13 provinces of China in 2020[J]. Chin J Vector Biol Control,2022,33(1):30-37. DOI:10.11853/j.issn.1003. 8280.2022.01.006.(in Chinese) [7] 朱江,邱星辉. 昆虫抗药性相关细胞色素P450基因的表达调控机制[J]. 昆虫学报,2021,64(1):109-120. DOI:10.16380/j.kcxb.2021.01.012.Zhu J,Qiu XH. Molecular mechanisms of expression regulation of insect cytochrome P450 genes involved in insecticide resistance[J]. Acta Entomol Sin,2021,64(1):109-120. DOI:10.16380/j.kcxb.2021.01.012.(in Chinese) [8] Ibrahim SS,Riveron JM,Bibby J,et al. Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector[J]. PLoS Genet,2015,11(10):e1005618. DOI:10.1371/journal.pgen.1005618. [9] Coetzee M,Koekemoer LL. Molecular systematics and insecticide resistance in the major African malaria vector Anopheles funestus[J]. Annu Rev Entomol,2013,58:393-412. DOI:10.1146/annurev-ento-120811-153628. [10] 王义冠. 我国登革热媒介伊蚊抗药性监测及抗性数据分析[D]. 北京:中国疾病预防控制中心,2016.Wang YG. Insecticides resistance surveillance for dengue vector Aedes in China and data analyses[D]. Beijing:Chinese Center for Disease Control and Prevention,2016. (in Chinese) [11] 焦健华,马磊,张东辉. 白纹伊蚊β-肌动蛋白基因片段的克隆及其作为基因表达内参照的应用[J]. 中国病原生物学杂志,2007,2(6):454-456. DOI:10.13350/j.cjpb.2007.06.018.Jiao JH,Ma L,Zhang DH. Cloning and sequences of Aedes albopictus β-actin gene fragment and its application as an internal control[J]. J Pathogen Biol,2007,2(6):454-456. DOI:10. 13350/j.cjpb.2007.06.018.(in Chinese) [12] Vannini L,Reed TW,Willis JH. Temporal and spatial expression of cuticular proteins of Anopheles gambiae implicated in insecticide resistance or differentiation of M/S incipient species[J]. Parasit Vectors,2014,7:24. DOI:10.1186/1756-3305-7-24. [13] Hemingway J,Hawkes NJ,Mccarroll L,et al. The molecular basis of insecticide resistance in mosquitoes[J]. Insect Biochem Mol Biol,2004,34(7):653-665. DOI:10.1016/j.ibmb.2004.03.018. [14] 王卫杰. 淡色库蚊抗药性比较蛋白质组学研究[D]. 南京:南京医科大学,2014.Wang WJ. A comparative proteomic study on insecticide resistance in the mosquito of Culex pipiens pallens[D]. Nanjing:Nanjing Medical University,2014. (in Chinese) [15] 陈凤菊,高希武,雷明庆,等. 单宁酸对棉铃虫谷胱甘肽S-转移酶的影响[J]. 昆虫学报,2003,46(6):684-690. DOI:10.16380/j.kcxb.2003.06.004.Chen FJ,Gao XW,Lei MQ,et al. Effects of tannic acid on glutathione S-transferases in Helicoverpa armigera (Hübner)[J]. Acta Entomol Sin,2003,46(6):684-690. DOI:10.16380/j.kcxb. 2003.06.004. [16] Ranson H,Hemingway J. Mosquito glutathione transferases[J]. Methods Enzymol,2005,401:226-241. DOI:10.1016/S0076-6879(05)01014-1. [17] Lumjuan N,Rajatileka S,Changsom D,et al. The role of the Aedes aegypti epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides[J]. Insect Biochem Mol Biol,2011,41(3):203-209. DOI:10.1016/j.ibmb.2010.12.005. [18] Luo YJ,Yang ZG,Xie DY,et al. Molecular cloning and expression of glutathione S-transferases involved in propargite resistance of the carmine spider mite,Tetranychus cinnabarinus (Boisduval)[J]. Pestic Biochem Physiol,2014,114:44-51. DOI:10.1016/j.pestbp.2014.07.004. [19] Yang J,Kong XD,Zhu-Salzman K,et al. The key glutathione S-transferase family genes involved in the detoxification of rice gramine in Brown Planthopper Nilaparvata lugens[J]. Insects,2021,12(12):1055. DOI:10.3390/insects12121055. [20] Yang YX,Lin RH,Li Z,et al. Function analysis of P450 and GST genes to imidacloprid in Aphis craccivora (Koch)[J]. Front Physiol,2021,11:624287. DOI:10.3389/fphys.2020.624287. [21] Alvarado-Delgado A,Perales Ortiz G,Tello-López AT,et al. Infection with Plasmodium berghei ookinetes alters protein expression in the brain of Anopheles albimanus mosquitoes[J]. Parasit Vectors,2016,9(1):542. DOI:10.1186/s13071-016-1830-9. [22] Mazzalupo S,Isoe J,Belloni V,et al. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase[J]. FASEB J,2016,30(1):111-120. DOI:10.1096/fj.15-277087. [23] Curbo S,Amiri M,Foroogh F,et al. The Drosophila melanogaster UMP-CMP kinase cDNA encodes an N-terminal mitochondrial import signal[J]. Biochem Biophys Res Commun,2003,311(2):440-445. DOI:10.1016/j.bbrc.2003.10.018. [24] Besson B,Basset J,Gatellier S,et al. Comparison of a human neuronal model proteome upon Japanese encephalitis or West Nile virus infection and potential role of mosquito saliva in neuropathogenesis[J]. PLoS One,2020,15(5):e0232585. DOI:10.1371/journal.pone.0232585. [25] 邱星辉. 白纹伊蚊抗药性分子机制研究进展[J]. 寄生虫与医学昆虫学报,2019,26(3):194-198. DOI:10.3969/j.issn.1005-0507.2019.03.009.Qiu XH. Current knowledge about the molecular mechanisms underlying insecticide resistance in Aedes albopictus[J]. Acta Parasitol Med Entomol Sin,2019,26(3):194-198. DOI:10.3969/j.issn.1005-0507.2019.03.009. [26] Pan J,Yang C,Liu Y,et al. Novel cytochrome P450(CYP6D1) and voltage sensitive sodium channel (Vssc) alleles of the house fly (Musca domestica) and their roles in pyrethroid resistance[J]. Pest Manag Sci,2018,74(4):978-986. DOI:10.1002/ps.4798. [27] Scott JG. Evolution of resistance to pyrethroid insecticides in Musca domestica[J]. Pest Manag Sci,2017,73(4):716-722. DOI:10.1002/ps.4328. [28] Ishak IH,Kamgang B,Ibrahim SS,et al. Pyrethroid resistance in Malaysian populations of dengue vector Aedes aegypti is mediated by CYP9 family of cytochrome P450 genes[J]. PLoS Negl Trop Dis,2017,11(1):e0005302. DOI:10.1371/journal.pntd.0005302. [29] Marcombe S,Fustec B,Cattel J,et al. Distribution of insecticide resistance and mechanisms involved in the arbovirus vector Aedes aegypti in Laos and implication for vector control[J]. PLoS Negl Trop Dis,2019,13(12):e0007852. DOI:10.1371/journal.pntd.0007852. |