[1] Ricci I, Valzano M, Ulissi U, et al. Symbiotic control of mosquito borne disease[J]. Pathog Glob Health, 2012, 106(7):380-385. DOI:10.1179/2047773212Y.0000000051. [2] Fang J. Ecology:A world without mosquitoes[J]. Nature, 2010, 466(7305):432-434. DOI:10.1038/466432a. [3] Douglas AE. Lessons from studying insect symbioses[J]. Cell Host Microbe, 2011, 10(4):359-367. DOI:10.1016/j.chom. 2011.09.001. [4] Yun JH, Roh SW, Whon TW, et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host[J]. Appl Environ Microbiol, 2014, 80(17):5254-5264. DOI:10.1128/AEM.01226-14. [5] Whitten MMA, Shiao SH, Levashina EA. Mosquito midguts and malaria:Cell biology, compartmentalization and immunology[J]. Parasite Immunol, 2006, 28(4):121-130. DOI:10.1111/j.1365-3024.2006.00804.x. [6] Hajkazemian M, Bossé C, Mozūraitis R, et al. Battleground midgut:The cost to the mosquito for hosting the malaria parasite[J]. Biol Cell, 2021, 113(2):79-94. DOI:10.1111/boc.202000039. [7] Bai S, Yao ZC, Raza MF, et al. Regulatory mechanisms of microbial homeostasis in insect gut[J]. Insect Sci, 2021, 28(2):286-301. DOI:10.1111/1744-7917.12868. [8] Strand MR. Composition and functional roles of the gut microbiota in mosquitoes[J]. Curr Opin Insect Sci, 2018, 28:59-65. DOI:10.1016/j.cois.2018.05.008. [9] Ricci I, Damiani C, Capone A, et al. Mosquito/microbiota interactions:From complex relationships to biotechnological perspectives[J]. Curr Opin Microbiol, 2012, 15(3):278-284. DOI:10.1016/j.mib.2012.03.004. [10] Kikuchi Y. Endosymbiotic bacteria in insects:Their diversity and culturability[J]. Microbes Environ, 2009, 24(3):195-204. DOI:10.1264/jsme2.ME09140S. [11] Schlaberg R. Microbiome diagnostics[J]. Clin Chem, 2020, 66(1):68-76. DOI:10.1373/clinchem.2019.303248. [12] 刘永鑫, 秦媛, 郭晓璇, 等. 微生物组数据分析方法与应用[J]. 遗传, 2019, 41(9):845-862. DOI:10.16288/j.yczz.19-222. Liu YX, Qin Y, Guo XX, et al. Methods and applications for microbiome data analysis[J]. Hereditas, 2019, 41(9):845-862. DOI:10.16288/j.yczz.19-222.(in Chinese) [13] Marchesi JR, Ravel J. The vocabulary of microbiome research:A proposal[J]. Microbiome, 2015, 3(1):31. DOI:10.1186/s40168-015-0094-5. [14] Tran Q, Pham DT, Phan V. Using 16S rRNA gene as marker to detect unknown bacteria in microbial communities[J]. BMC Bioinformatics, 2017, 18 Suppl 14:S499. DOI:10.1186/s12859-017-1901-8. [15] Simon C, Daniel R. Metagenomic analyses:Past and future trends[J]. Appl Environ Microbiol, 2011, 77(4):1153-1161. DOI:10.1128/AEM.02345-10. [16] Tchouassi DP, Muturi EJ, Arum SO, et al. Host species and site of collection shape the microbiota of Rift Valley fever vectors in Kenya[J]. PLoS Negl Trop Dis, 2019, 13(6):e0007361. DOI:10.1371/journal.pntd.0007361. [17] Zouache K, Raharimalala FN, Raquin V, et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Ae. aegypti, from different geographic regions of Madagascar[J]. FEMS Microbiol Ecol, 2011, 75(3):377-389. DOI:10.1111/j.1574-6941.2010. 01012.x. [18] Coon KL, Vogel KJ, Brown MR, et al. Mosquitoes rely on their gut microbiota for development[J]. Mol Ecol, 2014, 23(11):2727-2739. DOI:10.1111/mec.12771. [19] Engel P, Moran NA. The gut microbiota of insects-diversity in structure and function[J]. FEMS Microbiol Rev, 2013, 37(5):699-735. DOI:10.1111/1574-6976.12025. [20] David MR, dos Santos LMB, Vicente ACP, et al. Effects of environment, dietary regime and ageing on the dengue vector microbiota:Evidence of a core microbiota throughout Aedes aegypti lifespan[J]. Mem Inst Oswaldo Cruz, 2016, 111(9):577-587. DOI:10.1590/0074-02760160238. [21] Kamlesh K Yadav, Ajitabh Bora, Sibnarayan Datta, et al. Molecular characterization of midgut microbiota of Aedes albopictus and Ae. aegypti from Arunachal Pradesh, India[J]. Parasit Vectors, 2015, 8(1):641. DOI:10.1186/s13071-015-1252-0. [22] Galeano-Castañeda Y, Bascuñán P, Serre D, et al. Trans-stadial fate of the gut bacterial microbiota in Anopheles albimanus[J]. Acta Trop, 2020, 201:105204. DOI:10.1016/j.actatropica. 2019.105204. [23] Rossi P, Ricci I, Cappelli A, et al. Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors[J]. Parasit Vectors, 2015, 8(1):278. DOI:10.1186/s13071-015-0888-0. [24] Baldini F, Segata N, Pompon J, et al. Evidence of natural Wolbachia infections in field populations of Anopheles gambiae[J]. Nat Commun, 2014, 5:3985. DOI:10.1038/ncomms4985. [25] Roux O, Renault D, Mouline K, et al. Living with predators at the larval stage has differential long-lasting effects on adult life history and physiological traits in two anopheline mosquito species[J]. J Insect Physiol, 2021, 131:104234. DOI:10.1016/j.jinsphys.2021.104234. [26] Bennett KL, Gómez-Martínez C, Chin Y, et al. Dynamics and diversity of bacteria associated with the disease vectors Aedes aegypti and Ae. albopictus[J]. Sci Rep, 2019, 9(1):12160. DOI:10.1038/s41598-019-48414-8. [27] Boissière A, Tchioffo MT, Bachar D, et al. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection[J]. PLoS Pathog, 2012, 8(5):e1002742. DOI:10.1371/journal.ppat.1002742. [28] Wang HY, Liu HM, Peng H, et al. A symbiotic gut bacterium enhances Aedes albopictus resistance to insecticide[J]. PLoS Negl Trop Dis, 2022, 16(3):e0010208. DOI:10.1371/journal.pntd.0010208. [29] Correa MA, Matusovsky B, Brackney DE, et al. Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development[J]. Nat Commun, 2018, 9(1):4464. DOI:10.1038/s41467-018-07014-2. [30] Moncayo AC, Lerdthusnee K, Leon R, et al. Meconial peritrophic matrix structure, formation, and meconial degeneration in mosquito pupae/pharate adults:Histological and ultrastructural aspects[J]. J Med Entomol, 2005, 42(6):939-944. DOI:10.1093/jmedent/42.6.939. [31] Heu K, Gendrin M. Mosquito microbiota and its influence on disease vectorial transmission[J]. Biol Aujourdhui, 2018, 212(3/4):119-136. DOI:10.1051/jbio/2019003. [32] Minard G, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the mosquito holobiont[J]. Parasit Vectors, 2013, 6:146. DOI:10.1186/1756-3305-6-146. [33] Buck M, Nilsson LKJ, Brunius C, et al. Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes[J]. Sci Rep, 2016, 6:22806. DOI:10.1038/srep22806. [34] Gimonneau G, Tchioffo MT, Abate L, et al. Composition of Anopheles coluzzii and An. gambiae microbiota from larval to adult stages[J]. Infect Genet Evol, 2014, 28:715-724. DOI:10.1016/j.meegid.2014.09.029. [35] Wang Y, Gilbreath III TM, Kukutla P, et al. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya[J]. PLoS One, 2011, 6(9):e24767. DOI:10.1371/journal.pone.0024767. [36] 杨义婷, 郭建洋, 龙楚云, 等. 昆虫内共生菌及其功能研究进展[J]. 昆虫学报, 2014, 57(1):111-122. DOI:10.16380/j.kcxb. 2014.01.005. Yang YT, Guo JY, Long CY, et al. Advances in endosymbionts and their functions in insects[J]. Acta Entomol Sin, 2014, 57(1):111-122. DOI:10.16380/j.kcxb.2014.01.005.(in Chinese) [37] Dada N, Sheth M, Liebman K, et al. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors[J]. Sci Rep, 2018, 8(1):2084. DOI:10.1038/s41598-018-20367-4. [38] Chouaia B, Rossi P, Epis S, et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts[J]. BMC Microbiol, 2012, 12 Suppl 1(Suppl 1):S2. DOI:10.1186/1471-2180-12-S1-S2. [39] Wang MF, An YP, Gao L, et al. Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH[J]. Cell Rep, 2021, 35(3):108992. DOI:10.1016/j.celrep.2021.108992. [40] Pan XL, Pike, Joshi D, et al. The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti[J]. ISME J, 2018, 12(1):277-288. DOI:10.1038/ismej.2017.174. [41] Gabrieli P, Caccia S, Varotto-Boccazzi I, et al. Mosquito trilogy:Microbiota, immunity and pathogens, and their implications for the control of disease transmission[J]. Front Microbiol, 2021, 12:630438. DOI:10.3389/fmicb.2021.630438. [42] Aliota MT, Peinado SA, Velez ID, et al. The wMel strain of Wolbachia reduces transmission of Zika virus by Aedes aegypti[J]. Sci Rep, 2016, 6:28792. DOI:10.1038/srep28792. [43] Lu P, Sun Q, Fu P, et al. Wolbachia inhibits binding of dengue and Zika viruses to mosquito cells[J]. Front Microbiol, 2020, 11:1750. DOI:10.3389/fmicb.2020.01750. [44] Flores HA, de Bruyne JT, O'Donnell TB, et al. Multiple Wolbachia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti[J]. PLoS Pathog, 2020, 16(4):e1008433. DOI:10.1371/journal.ppat.1008433. [45] Soltani A, Vatandoost H, Oshaghi MA, et al. The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera:Culicidae) to organophosphate insecticides[J]. Pathog Glob Health, 2017, 111(6):289-296. DOI:10.1080/20477724.2017. 1356052. [46] Crava CM, Brütting C, Baldwin IT. Transcriptome profiling reveals differential gene expression of detoxification enzymes in a hemimetabolous tobacco pest after feeding on jasmonate-silenced Nicotiana attenuata plants[J]. BMC Genomics, 2016, 17(1):1005. DOI:10.1186/s12864-016-3348-0. [47] Xia XF, Sun BT, Gurr GM, et al. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.)[J]. Front Microbiol, 2018, 9:25. DOI:10.3389/fmicb.2018.00025. [48] 洪善超, 吕园, 方福谨, 等. 沃尔巴克氏体与淡色库蚊溴氰菊酯抗性关系初步研究[J]. 中国血吸虫病防治杂志, 2014, 26(6):672-674, 680. DOI:10.16250/j.32.1374.2014.06.002. Hong SC, Lyu Y, Fang FJ, et al. Presumptive role of Wolbachia in deltamethrin resistance of Culex pipiens pallens[J]. Chin J Schistosomiasis Control, 2014, 26(6):672-674, 680. DOI:10.16250/j.32.1374.2014.06.002.(in Chinese) [49] 邢一帆, 刘芷涵, 张瑞敏, 等. 中肠共生菌嗜水气单胞菌对淡色库蚊溴氰菊酯抗性的影响[J]. 中国病原生物学杂志, 2021, 16(6):661-666. DOI:10.13350/j.cjpb.210609. Xing YF, Liu ZH, Zhang RM, et al. Effect of the midgut symbiotic Aeromonas hydrophila on the deltamethrin resistance of Culex pipiens pallens[J]. J Pathog Biol, 2021, 16(6):661-666. DOI:10.13350/j.cjpb.210609.(in Chinese) [50] Dada N, Lol JC, Benedict AC, et al. Pyrethroid exposure alters internal and cuticle surface bacterial communities in Anopheles albimanus[J]. ISME J, 2019, 13(10):2447-2464. DOI:10.1038/s41396-019-0445-5. [51] Mancini MV, Damiani C, Accoti A, et al. Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing[J]. BMC Microbiol, 2018, 18(1):126. DOI:10.1186/s12866-018-1266-9. [52] Bai L, Wang LL, Vega-Rodríguez J, et al. A gut symbiotic bacterium Serratia marcescens renders mosquito resistance to Plasmodium infection through activation of mosquito immune responses[J]. Front Microbiol, 2019, 10:1580. DOI:10.3389/fmicb.2019.01580. [53] Gao H, Bai L, Jiang YM, et al. A natural symbiotic bacterium drives mosquito refractoriness to Plasmodium infection via secretion of an antimalarial lipase[J]. Nat Microbiol, 2021, 6(6):806-817. DOI:10.1038/s41564-021-00899-8. |