[1] Zhang HL, Wang LP, Lai SJ, et al. Surveillance and early warning systems of infectious disease in China:From 2012 to 2014[J]. Int J Health Plann Manage, 2017, 32(3):329-338. DOI:10.1002/hpm.2434. [2] Yang WZ, Li ZJ, Lan YJ, et al. A nationwide web-based automated system for early outbreak detection and rapid response in China[J]. Western Pac Surveill Response J, 2011, 2(1):10-15. DOI:10.5365/WPSAR.2010.1.1.009. [3] 方艳, 宋铁, 李灵辉, 等. 广东省传染病自动预警系统运行现状分析[J]. 中华流行病学杂志, 2013, 34(8):800-803. DOI:10.3760/cma.j.issn.0254-6450.2013.08.011. Fang Y, Song T, Li LH, et al. Current situation on the China Infectious Disease Automated-alert and Response System in Guangdong province, China[J]. Chin J Epidemiol, 2013, 34(8):800-803. DOI:10.3760/cma.j.issn.0254-6450.2013.08.011.(in Chinese) [4] 吕炜, 赖圣杰, 唐忠, 等. 广西壮族自治区2009-2011年传染病自动预警系统运行效果分析[J]. 中华流行病学杂志, 2013, 34(6):589-593. DOI:10.3760/cma.j.issn.0254-6450.2013. 06.012. Lyu W, Lai SJ, Tang Z, et al. Application of the China Infectious Diseases Automated-alert and Response System in Guangxi, 2009-2011[J]. Chin J Epidemiol, 2013, 34(6):589-593. DOI:10. 3760/cma.j.issn.0254-6450.2013.06.012.(in Chinese) [5] 徐旭卿, 鲁琴宝, 王臻, 等. 浙江省传染病自动预警系统暴发预警效果评价[J]. 中华流行病学杂志, 2011, 32(5):442-445. DOI:10.3760/cma.j.issn.0254-6450.2011.05.004. Xu XQ, Lu QB, Wang Z, et al. Evaluation on the performance of China Infectious Disease Automated-alert and Response System(CIDARS)in Zhejiang province[J]. Chin J Epidemiol, 2011, 32(5):442-445. DOI:10.3760/cma.j.issn.0254-6450.2011.05.004.(in Chinese) [6] Kuang J, Yang WZ, Zhou DL, et al. Epidemic features affecting the performance of outbreak detection algorithms[J]. BMC Public Health, 2012, 12:418. DOI:10.1186/1471-2458-12-418. [7] Ceylan Z. Estimation of COVID-19 prevalence in Italy, Spain, and France[J]. Sci Total Environ, 2020, 729:138817. DOI:10.1016/j.scitotenv.2020.138817. [8] Liu H, Li CX, Shao YQ, et al. Forecast of the trend in incidence of acute hemorrhagic conjunctivitis in China from 2011-2019 using the seasonal autoregressive integrated moving average (SARIMA) and exponential smoothing (ETS) models[J]. J Infect Public Health, 2020, 13(2):287-294. DOI:10.1016/j.jiph.2019.12.008. [9] Zhai MM, Li WH, Tie P, et al. Research on the predictive effect of a combined model of ARIMA and neural networks on human brucellosis in Shanxi province, China:A time series predictive analysis[J]. BMC Infect Dis, 2021, 21(1):280. DOI:10.1186/s12879-021-05973-4. [10] Wu W, An SY, Guan P, et al. Time series analysis of human brucellosis in mainland China by using Elman and Jordan recurrent neural networks[J]. BMC Infect Dis, 2019, 19(1):414. DOI:10.1186/s12879-019-4028-x. [11] Li ZQ, Pan HQ, Liu Q, et al. Comparing the performance of time series models with or without meteorological factors in predicting incident pulmonary tuberculosis in eastern China[J]. Infect Dis Poverty, 2020, 9(1):151. DOI:10.1186/s40249-020-00771-7. [12] 刘建, 闫佳, 夏军林. 某县一起流行性出血热暴发疫情的调查分析[J]. 河南预防医学杂志, 2020, 31(1):63-65. DOI:10.13515/j.cnki.hnjpm.1006-8414.2020.01.019. Liu J, Yan J, Xia JL. Investigation and analysis of an outbreak of epidemic hemorrhagic fever in a county[J]. Henan J Prev Med, 2020, 31(1):63-65. DOI:10.13515/j.cnki.hnjpm.1006-8414.2020.01.019.(in Chinese) [13] 刘淑萍. 一起野外施工流行性出血热暴发流行病学分析[J]. 中国公共卫生管理, 2011, 27(1):60-61. DOI:10.19568/j.cnki.23-1318.2011.01.034. Liu SP. Epidemiological analysis of an outbreak of epidemic hemorrhagic fever in field construction[J]. Chin J Public Health Mange, 2011, 27(1):60-61. DOI:10.19568/j.cnki.23-1318. 2011.01.034.(in Chinese) [14] Hyndman RJ, Khandakar Y. Automatic time series forecasting:The forecast package for R[J]. J Stat Softw, 2008, 27(3):1-22. DOI:10.18637/jss.v027.i03. [15] Hyndman RJ, Koehler AB, Snyder RD, et al. A state space framework for automatic forecasting using exponential smoothing methods[J]. Int J Forecasting, 2002, 18(3):439-454. DOI:10.1016/S0169-2070(01)00110-8. [16] De Livera AM, Hyndman RJ, Snyder RD. Forecasting time series with complex seasonal patterns using exponential smoothing[J]. J Am Stat Assoc, 2011, 106(496):1513-1527. DOI:10.1198/jasa.2011.tm09771. [17] Hyndman RJ, King ML, Pitrun I, et al. Local linear forecasts using cubic smoothing splines[J]. Aust N Z J Stat, 2005, 47(1):87-99. DOI:10.1111/j.1467-842X.2005.00374.x. [18] Martínez F, Charte F, Rivera AJ, et al. Automatic time series forecasting with GRNN:A comparison with other models[C]//Proceedings of the 15th International Work-Conference on Advances in Computational Intelligence. Gran Canaria:Springer, 2019:198-209. DOI:10.1007/978-3-030-20521-8_17. [19] Guo YH, Feng Y, Qu FL, et al. Prediction of hepatitis E using machine learning models[J]. PLoS One, 2020, 15(9):e0237750. DOI:10.1371/journal.pone.0237750. [20] Wang YW, Shen ZZ, Jiang Y. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China:A time-series study[J]. BMJ Open, 2019, 9(6):e025773. DOI:10.1136/bmjopen-2018-025773. [21] Yu CC, Xu CJ, Li YH, et al. Time series analysis and forecasting of the hand-foot-mouth disease morbidity in China using an advanced exponential smoothing state space TBATS model[J]. Infect Drug Resist, 2021, 14:2809-2821. DOI:10.2147/IDR.S304652. |