[1] Gomollón-Bel F. Ten chemical innovations that will change our world:IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable[J]. Chem Int, 2019, 41(2):12-17. DOI:10.1515/ci-2019-0203. [2] Kah M, Hofmann T. Nanopesticide research:Current trends and future priorities[J]. Environ Int, 2014, 63:224-235. DOI:10.1016/j.envint.2013.11.015. [3] Kah M, Kookana RS, Gogos A, et al. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues[J]. Nat Nanotechnol, 2018, 13(8):677-684. DOI:10.1038/s41565-018-0131-1. [4] Fouad H, Hongjie L, Hosni D, et al. Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action[J]. Artif Cells Nanomed Biotechnol, 2018, 46(3):558-567. DOI:10.1080/21691401.2017.1329739. [5] Kalimuthu K, Panneerselvam C, Chou C, et al. Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus:Synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes[J]. Process Saf Environ Prot, 2017, 109:82-96. DOI:10.1016/j.psep.2017.03.027. [6] Nair PMG, Choi J. Modulation in the mRNA expression of ecdysone receptor gene in aquatic midge, Chironomus riparius upon exposure to nonylphenol and silver nanoparticles[J]. Environ Toxicol Pharmacol, 2012, 33(1):98-106. DOI:10.1016/j.etap.2011.09.006. [7] Zakladnoy GA. Response of insect pests of stored grain to silicon dioxide treatment[J]. Entomol Rev, 2019, 99(8):1125-1127. DOI:10.1134/S0013873819080062. [8] 沈殿晶, 张铭瑞, 陈小军, 等. 基于介孔二氧化硅的鱼藤酮纳米颗粒的制备及其性能研究[J]. 农药学学报, 2020, 22(6):1061-1068. DOI:10.16801/j.issn.1008-7303.2020.0136. Shen DJ, Zhang MR, Chen XJ, et al. Preparation and properties of rotenone nanoparticle based on mesoporous silica[J]. Chin J Pestic Sci, 2020, 22(6):1061-1068. DOI:10.16801/j.issn.1008-7303.2020.0136.(in Chinese) [9] 刘倩, 姜建辉, 吴瑛. 纳米二氧化钛对果蝇肠道共生菌的影响[J]. 黑龙江农业科学, 2017(9):94-97. DOI:10.11942/j.issn1002-2767.2017.09.0094. Liu Q, Jiang JH, Wu Y. Effects of titanium dioxide on intestinal symbiotic bacteria of Drosophila melanogaster[J]. Heilongjiang Agric Sci, 2017(9):94-97. DOI:10.11942/j.issn1002-2767. 2017.09.0094.(in Chinese) [10] 黎祖秋, 屈志强, 汤洪洋, 等. 5种卫生杀虫剂对登革热媒介伊蚊现场控制效果研究[J]. 中国媒介生物学及控制杂志, 2018, 29(6):598-600. DOI:10.11853/j.issn.1003.8280.2018.06.011. Li ZQ, Qu ZQ, Tang HY, et al. Field control efficacy of Aedes vectors of dengue fever with five public health insecticides[J]. Chin J Vector Biol Control, 2018, 29(6):598-600. DOI:10.11853/j.issn.1003.8280.2018.06.011.(in Chinese) [11] Kah M, Beulke S, Tiede K, et al. Nanopesticides:State of knowledge, environmental fate, and exposure modeling[J]. Crit Rev Environ Sci Technol, 2013, 43(16):1823-1867. DOI:10.1080/10643389.2012.671750. [12] Kumar RSS, Shiny PJ, Anjali CH, et al. Distinctive effects of Nano-sized permethrin in the environment[J]. Environ Sci Pollut Res Int, 2013, 20(4):2593-2602. DOI:10.1007/s11356-012-1161-0. [13] Kala S, Sogan N, Verma P, et al. Nanoemulsion of cashew nut shell liquid bio-waste:Mosquito larvicidal activity and insights on possible mode of action[J]. South Afr J Bot, 2019, 127:293-300. DOI:10.1016/j.sajb.2019.10.006. [14] Cui B, Wang CX, Zhao X, et al. Characterization and evaluation of avermectin solid nanodispersion prepared by microprecipitation and lyophilisation techniques[J]. PLoS One, 2018, 13(1):e0191742. DOI:10.1371/journal.pone.0191742. [15] Balaji APB, Mishra P, Kumar RSS, et al. Nanoformulation of poly(ethylene glycol) polymerized organic insect repellent by PIT emulsification method and its application for Japanese encephalitis vector control[J]. Colloids Surf B Biointerfaces, 2015, 128:370-378. DOI:10.1016/j.colsurfb.2015.02.034. [16] Abreu FOMS, Oliveira EF, Paula HCB, et al. Chitosan/cashew gum nanogels for essential oil encapsulation[J]. Carbohydr Polym, 2012, 89(4):1277-1282. DOI:10.1016/j.carbpol.2012. 04.048. [17] Iliou K, Kikionis S, Petrakis PV, et al. Citronella oil-loaded electrospun micro/nanofibrous matrices as sustained repellency systems for the Asian tiger mosquito Aedes albopictus[J]. Pest Manag Sci, 2019, 75(8):2142-2147. DOI:10.1002/ps.5334. [18] Zhang X, Zhang J, Zhu KY. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae)[J]. Insect Mol Biol, 2010, 19(5):683-693. DOI:10.1111/j.1365-2583.2010.01029.x. [19] Yan S, Qian J, Cai C, et al. Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines[J]. J Pest Sci, 2020, 93(1):449-459. DOI:10.1007/s10340-019-01157-x. [20] Liu XX, Zheng Y, Zhang SB, et al. Perylenediimide-cored cationic nanocarriers deliver virus DNA to kill insect pests[J]. Polym Chem, 2016, 7(22):3740-3746. DOI:10.1039/C6PY00574H. [21] Hunt JW, Dean AP, Webster RE, et al. A novel mechanism by which silica defends grasses against herbivory[J]. Ann Bot, 2008, 102(4):653-656. DOI:10.1093/aob/mcn130. [22] Ayoub HA, Khairy M, Rashwan FA, et al. Synthesis and characterization of silica nanostructures for cotton leaf worm control[J]. J Nanostruct Chem, 2017, 7(2):91-100. DOI:10.1007/s40097-017-0229-2. [23] Han JR, Weng YX, Xu J, et al. Thermo-sensitive micelles based on amphiphilic poly(butylene 2-methylsuccinate)-poly(ethylene glycol) multi-block copolyesters as the pesticide carriers[J]. Colloids Surf A Physicochem Eng Aspects, 2019, 575:84-93. DOI:10.1016/j.colsurfa.2019.04.057. [24] Song SJ, Wang YL, Xie J, et al. Carboxymethyl chitosan modified carbon nanoparticle for controlled emamectin benzoate delivery:Improved solubility, pH-responsive release, and sustainable pest control[J]. ACS Appl Mater Interfaces, 2019, 11(37):34258-34267. DOI:10.1021/acsami.9b12564. [25] Bombo AB, Pereira AES, Lusa MG, et al. A mechanistic view of interactions of a nanoherbicide with target organism[J]. J Agric Food Chem, 2019, 67(16):4453-4462. DOI:10.1021/acs.jafc.9b00806. [26] Zhao KF, Hu J, Ma Y, et al. Topology-regulated pesticide retention on plant leaves through concave Janus carriers[J]. ACS Sustainable Chem Eng, 2019, 7(15):13148-13156. DOI:10.1021/acssuschemeng.9b02319. [27] Jia X, Sheng WB, Li W, et al. Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention[J]. ACS Appl Mater Interfaces, 2014, 6(22):19552-19558. DOI:10.1021/am506458t. [28] Greene LC, Meyers PA, Springer JT, et al. Biological evaluation of pesticides released from temperature-responsive microcapsules[J]. J Agric Food Chem, 1992, 40(11):2274-2278. DOI:10.1021/jf00023a044. [29] Ye Z, Guo JJ, Wu DW, et al. Photo-responsive shell cross-linked micelles based on carboxymethyl chitosan and their application in controlled release of pesticide[J]. Carbohydr Polym, 2015, 132:520-528. DOI:10.1016/j.carbpol.2015.06.077. [30] 杨君, 张正, 崔忠凯, 等. 新型pH响应性噻虫嗪纳米脂质体的制备及其杀虫活性[J]. 农药学学报, 2020, 22(6):1054-1060. DOI:10.16801/j.issn.1008-7303.2020.0129. Yang J, Zhang Z, Cui ZK, et al. Fabrication of pH-responsive non-phospholipid liposomal nanocarriers for insecticidal activity of thiamethoxam[J]. Chin J Pestic Sci, 2020, 22(6):1054-1060. DOI:10.16801/j.issn.1008-7303.2020.0129.(in Chinese) [31] Kaziem AE, Gao YH, Zhang Y, et al. α-Amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella[J]. J Hazard Mater, 2018, 359:213-221. DOI:10. 1016/j.jhazmat.2018.07.059. [32] Liang Y, Gao YH, Wang WC, et al. Fabrication of smart stimuli-responsive mesoporous organosilica Nano-vehicles for targeted pesticide delivery[J]. J Hazard Mater, 2020, 389:122075. DOI:10.1016/j.jhazmat.2020.122075. [33] Chandramohan B, Murugan K, Panneerselvam C, et al. Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles:Genotoxicity and impact on predation efficiency of mosquito natural enemies[J]. Parasitol Res, 2016, 115(3):1015-1025. DOI:10.1007/s00436-015-4829-9. [34] Steffens C, Manzoli A, Oliveira JE, et al. Bio-inspired sensor for insect pheromone analysis based on polyaniline functionalized AFM cantilever sensor[J]. Sensor Actuat B Chem, 2014, 191:643-649. DOI:10.1016/j.snb.2013.10.053. |