[1] Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue[J]. Nature, 2013, 496(7446):504-507. DOI:10.1038/nature12060. [2] 赵春春, 周欣欣, 李文玉, 等. 2020年中国13省份登革热媒介白纹伊蚊抗药性监测及分析研究[J]. 中国媒介生物学及控制杂志, 2022, 3(1):30-37. DOI:10.11853/j.issn.1003.8280. 2022.01.006. Zhao CC, Zhou XX, Li WY, et al. Insecticide resistance surveillance and characteristic analysis of dengue vector Aedes albopictus in 13 provinces of China in 2020[J]. J Vector Biol Control, 2022, 3(1):30-37.DOI:10.11853/j.issn.1003.8280. 2022.01.006.(in Chinese) [3] Ryan SJ, Carlson CJ, Mordecai EA, et al. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change[J]. PLoS Negl Trop Dis, 2019, 13(3):e0007213. DOI:10.1371/journal.pntd.0007213. [4] Brady OJ, Hay SI. The global expansion of dengue:How Aedes aegypti mosquitoes enabled the first pandemic arbovirus[J]. Ann Rev Entomol, 2020, 65:191-208. DOI:10.1146/annurev-ento-011019-024918. [5] 刘起勇. 我国登革热流行新趋势、防控挑战及策略分析[J]. 中国媒介生物学及控制杂志, 2020, 31(1):1-6. DOI:10.11853/j.issn.1003.8280.2020.01.001. Liu QY. Dengue fever in China:New epidemical trend, challenges and strategies for prevention and control[J]. J Vector Biol Control, 2020, 31(1):1-6. DOI:10.11853/j.issn.1003. 8280.2020.01.001.(in Chinese) [6] Louis VR, Phalkey R, Horstick O, et al. Modeling tools for dengue risk mapping:A systematic review[J]. Int J Health Geogr, 2014, 13:50. DOI:10.1186/1476-072X-13-50. [7] Sylvestre E, Joachim C, Cécilia-Joseph E, et al. Data-driven methods for dengue prediction and surveillance using real-world and Big Data:A systematic review[J]. PLoS Negl Trop Dis, 2022, 16(1):e0010056. DOI:10.1371/journal.pntd.0010056. [8] Mussumeci E, Coelho FC. Large-scale multivariate forecasting models for dengue-LSTM versus random forest regression[J]. Spat Spatio:Temporal Epidemiol, 2020, 35:100372. DOI:10. 1016/j.sste.2020.100372. [9] Campbell LP, Luther C, Moo-Llanes D, et al. Climate change influences on global distributions of dengue and chikungunya virus vectors[J]. Philos Trans R Soc Lond B Biol Sci, 2015, 370(1665):20140135. DOI:10.1098/rstb.2014.0135. [10] Franklinos LHV, Jones KE, Redding DW, et al. The effect of global change on mosquito-borne disease[J]. Lancet Infect Dis, 2019, 19(9):e302-e312. DOI:10.1016/S1473-3099(19)30161-6. [11] Marti R, Li ZC, Catry T, et al. A mapping review on urban landscape factors of dengue retrieved from earth observation data, GIS techniques, and survey questionnaires[J]. Remote Sens, 2020, 12(6):932. DOI:10.3390/rs12060932. [12] Polwiang S. The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003-2017)[J]. BMC Infect Dis, 2020, 20:208. DOI:10.1186/s12879-020-4902-6. [13] Jain R, Sontisirikit S, Iamsirithaworn S, et al. Prediction of dengue outbreaks based on disease surveillance, meteorological and socio-economic data[J]. BMC Infect Dis, 2019, 19(1):272. DOI:10.1186/s12879-019-3874-x. [14] Wesolowski A, Qureshi T, Boni MF, et al. Impact of human mobility on the emergence of dengue epidemics in Pakistan[J]. Proc Natl Acad Sci USA, 2015, 112(38):11887-11892. DOI:10.1073/pnas.1504964112. [15] Bomfim R, Pei S, Shaman J, et al. Predicting dengue outbreaks at neighbourhood level using human mobility in urban areas[J]. J R Soc Interface, 2020, 17(171):20200691. DOI:10.1098/rsif. 2020.0691. [16] Li QX, Cao W, Ren HY, et al. Spatiotemporal responses of dengue fever transmission to the road network in an urban area[J]. Acta Trop, 2018, 183:8-13. DOI:10.1016/j.actatropica. 2018.03.026. [17] Pan SJ, Yang Q. A survey on transfer learning[J]. IEEE Trans Knowl Data Eng, 2010, 22(10):1345-1359. DOI:10.1109/TKDE.2009.191. [18] Ren PZ, Xiao Y, Chang XJ, et al. A survey of deep active learning[J]. ACM Comput Surv, 2022, 54(9):1-40. DOI:10.1145/3472291. [19] 曹元晖, 刘纪平, 王勇, 等. 基于POI数据的城市建筑功能分类方法研究[J]. 地球信息科学学报, 2020, 22(6):1339-1348. DOI:10.12082/dqxxkx.2020.190608. Cao YH, Liu JP, Wang Y, et al. A study on the method for functional classification of urban buildings by using POI data[J]. J Geo-Inf Sci, 2020, 22(6):1339-1348. DOI:10.12082/dqxxkx. 2020.190608.(in Chinese) [20] Lin AQ, Sun XM, Wu H, et al. Identifying urban building function by integrating remote sensing imagery and POI data[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2021, 14:8864-8875. DOI:10.1109/JSTARS.2021.3107543. [21] Li ZC, Gurgel H, Xu L, et al. Improving dengue forecasts by using geospatial big data analysis in google earth engine and the historical dengue information-aided long short term memory modeling[J]. Biology (Basel), 2022, 11(2):169. DOI:10.3390/biology11020169. [22] Chabot-Couture G, Nigmatulina K, Eckhoff P. An environmental data set for vector-borne disease modeling and epidemiology[J]. PLoS One, 2014, 9(4):e94741. DOI:10.1371/journal.pone. 0094741. [23] Siraj AS, Rodriguez-Barraquer I, Barker CM, et al. Spatiotemporal incidence of Zika and associated environmental drivers for the 2015-2016 epidemic in Colombia[J]. Sci Data, 2018, 5(1):180073. DOI:10.1038/sdata.2018.73. [24] Tamiminia H, Salehi B, Mahdianpari M, et al. Google earth engine for geo-big data applications:A meta-analysis and systematic review[J]. ISPRS J Photog Remote Sens, 2020, 164:152-170. DOI:10.1016/j.isprsjprs.2020.04.001. [25] 付东杰, 肖寒, 苏奋振, 等. 遥感云计算平台发展及地球科学应用[J]. 遥感学报, 2021, 25(1):220-230. DOI:10.11834/jrs.20210447. Fu DJ, Xiao H, Su FZ, et al. Remote sensing cloud computing platform development and Earth science application[J]. Nat Remote Sens Bull, 2021, 25(1):220-230. DOI:10.11834/jrs. 20210447.(in Chinese) [26] Frake AN, Peter BG, Walker ED, et al. Leveraging big data for public health:Mapping malaria vector suitability in Malawi with Google Earth Engine[J]. PLoS One, 2020, 15(8):e0235697. DOI:10.1371/journal.pone.0235697. [27] Ramadona AL, Tozan Y, Lazuardi L, et al. A combination of incidence data and mobility proxies from social media predicts the intra-urban spread of dengue in Yogyakarta, Indonesia[J]. PLoS Negl Trop Dis, 2019, 13(4):e0007298. DOI:10.1371/journal.pntd.0007298. [28] Zhang Y, Riera J, Ostrow K, et al. Modeling the relative role of human mobility, land-use and climate factors on dengue outbreak emergence in Sri Lanka[J]. BMC Infect Dis, 2020, 20(1):649. DOI:10.1186/s12879-020-05369-w. [29] Appice A, Gel YR, Iliev I, et al. A Multi-stage machine learning approach to predict dengue incidence:A case study in Mexico[J]. IEEE Access, 2020, 8:52713-52725. DOI:10.1109/ACCESS.2020.2980634. [30] Xu JC, Xu KQ, Li ZC, et al. Forecast of dengue cases in 20 Chinese cities based on the deep learning method[J]. Int J Environ Res Public Health, 2020, 17(2):453. DOI:10.3390/ijerph17020453. [31] Zhao NZ, Charland K, Carabali M, et al. Machine learning and dengue forecasting:Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia[J]. PLoS Negl Trop Dis, 2020, 14(9):e0008056. DOI:10.1371/journal.pntd.0008056. [32] Amin S, Uddin MI, Hassan S, et al. Recurrent neural networks with TF-IDF embedding technique for detection and classification in tweets of dengue disease[J]. IEEE Access, 2020, 8:131522-131533. DOI:10.1109/ACCESS.2020.3009058. [33] Amin S, Uddin MI, Zeb MA, et al. Detecting dengue/Flu infections based on tweets using LSTM and word embedding[J]. IEEE Access, 2020, 8:189054-189068. DOI:10.1109/ACCESS. 2020.3031174. [34] Hoyos W, Aguilar J, Toro M. Dengue models based on machine learning techniques:A systematic literature review[J]. Artif Intellig Med, 2021, 119:102157. DOI:10.1016/j.artmed.2021. 102157. [35] Rehman NA, Saif U, Chunara R. Deep landscape features for improving vector-borne disease prediction[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach:IEEE, 2019:44-51. [36] Liu K, Zhang M, Xi GK, et al. Enhancing fine-grained intra-urban dengue forecasting by integrating spatial interactions of human movements between urban regions[J]. PLoS Negl Trop Dis, 2020, 14(12):e0008924. DOI:10.1371/JOURNAL.PNTD.0008924. |