[1] World Health Organization. World malaria report 2019[R]. Geneva:World Health Organization,2019:4-15. [2] Talapko J,Škrlec I,Alebić T,et al. Malaria:the past and the present[J]. Microorganisms,2019,7(6):179. DOI:10.3390/microorganisms7060179. [3] Raghavendra K,Barik TK,Reddy BPN,et al. Malaria vector control:from past to future[J]. Parasitol Res,2011,108(4):757-779. DOI:10.1007/s00436-010-2232-0. [4] World Health Organization. Global vector control response 2017-2030[EB/OL]. (2017-10-02)[2021-08-04]. https://www.who.int/publications/i/item/9789241512978. [5] Hamilton WL,Amato R,van der Pluijm RW,et al. Evolution and expansion of multidrug-resistant malaria in southeast Asia:a genomic epidemiology study[J]. Lancet Infect Dis,2019,19(9):943-951. DOI:10.1016/S1473-3099(19)30392-5. [6] Zhou S,Li ZJ,Cotter C,et al. Trends of imported malaria in China 2010-2014:analysis of surveillance data[J]. Malaria J,2016,15(1):39. DOI:10.1186/s12936-016-1093-0. [7] 咸越,王曼丽,邵天,等. 我国疟疾防治政策演变及趋势分析[J]. 中国卫生政策研究,2017,10(3):70-74. DOI:10.3969/j.issn.1674-2982.2017.03.012.Xian Y,Wang ML,Shao T,et al. Analysis on the evolution and trend of malaria prevention and control policies in China[J]. Chin J Health Policy,2017,10(3):70-74. DOI:10.3969/j.issn.1674-2982.2017.03.012. [8] Dondorp AM,Yeung S,White L,et al. Artemisinin resistance:current status and scenarios for containment[J]. Nat Rev Microbiol,2010,8(4):272-280. DOI:10.1038/nrmicro2331. [9] Ranson H,Lissenden N. Insecticide resistance in african Anopheles mosquitoes:a worsening situation that needs urgent action to maintain malaria control[J]. Trends Parasitol,2016,32(3):187-196. DOI:10.1016/j.pt.2015.11.010. [10] van der Pluijm RW,Imwong M,Chau NH,et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia,Thailand,and Vietnam:a prospective clinical,pharmacological,and genetic study[J]. Lancet Infect Dis,2019,19(9):952-961. DOI:10.1016/S1473-3099(19)30391-3. [11] Imwong M,Hien TT,Thuy-Nhien NT,et al. Spread of a single multidrug resistant malaria parasite lineage (PfPailin) to Vietnam[J]. Lancet Infect Dis,2017,17(10):1022-1023. DOI:10.1016/S1473-3099(17)30524-8. [12] Haldar K,Bhattacharjee S,Safeukui I. Drug resistance in Plasmodium[J]. Nat Rev Microbiol,2018,16(3):156-170. DOI:10.1038/nrmicro.2017.161. [13] Bhatt S,Weiss DJ,Cameron E,et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015[J]. Nature,2015,526(7572):207-211. DOI:10.1038/nature15535. [14] Alonso PL,Tanner M. Public health challenges and prospects for malaria control and elimination[J]. Nat Med,2013,19(2):150-155. DOI:10.1038/nm.3077. [15] Wang SB,Jacobs-Lorena M. Genetic approaches to interfere with malaria transmission by vector mosquitoes[J]. Trends Biotechnol,2013,31(3):185-193. DOI:10.1016/j.tibtech.2013. 01.001. [16] 崔春来,陈晶晶,王四宝. 蚊媒传染病的遗传控制和共生控制[J]. 应用昆虫学报,2015,52(5):1061-1071. DOI:10.7679/j.issn.2095?1353.2015.127.Cui CL,Chen JJ,Wang SB. Genetic control and paratransgenesis of mosquito-borne diseases[J]. Chin J Appl Entomol,2015,52(5):1061-1071. DOI:10.7679/j.issn.2095?1353.2015.127. [17] Wang SB,Ghosh AK,Bongio N,et al. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes[J]. Proc Natl Acad Sci USA,2012,109(31):12734-12739. DOI:10. 1073/pnas.1204158109. [18] Strand MR. Composition and functional roles of the gut microbiota in mosquitoes[J]. Curr Opin Insect Sci,2018,28:59-65. DOI:10.1016/j.cois.2018.05.008. [19] Straif SC,Mbogo CNM,Toure AM,et al. Midgut bacteria in Anopheles gambiae and An. funestus (Diptera:Culicidae) from Kenya and Mali[J]. J Med Entomol,1998,35(3):222-226. DOI:10.1093/jmedent/35.3.222. [20] Wang Y,Gilbreath III TM,Kukutla P,et al. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya[J]. PLoS One,2011,6(9):e24767. DOI:10.1371/journal.pone.0024767. [21] Whitten MMA,Shiao SH,Levashina EA. Mosquito midguts and malaria:cell biology,compartmentalization and immunology[J]. Parasite Immunol,2006,28(4):121-130. DOI:10.1111/j.1365-3024.2006.00804.x. [22] Abraham EG,Jacobs-Lorena M. Mosquito midgut barriers to malaria parasite development[J]. Insect Biochem Mol Biol,2004,34(7):667-671. DOI:10.1016/j.ibmb.2004.03.019. [23] Drexler AL,Vodovotz Y,Luckhart S. Plasmodium development in the mosquito:biology bottlenecks and opportunities for mathematical modeling[J]. Trends Parasitol,2008,24(8):333-336. DOI:10.1016/j.pt.2008.05.005. [24] Pumpuni CB,Demaio J,Kent M,et al. Bacterial population dynamics in three anopheline species:the impact on Plasmodium sporogonic development[J]. Am J Trop Med Hyg,1996,54(2):214-218. DOI:10.4269/ajtmh.1996.54.214. [25] Gao H,Cui CL,Wang LL,et al. Mosquito microbiota and implications for disease control[J]. Trends Parasitol,2020,36(2):98-111. DOI:10.1016/j.pt.2019.12.001. [26] Riehle MA,Moreira CK,Lampe D,et al. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut[J]. Int J Parasitol,2007,37(6):595-603. DOI:10.1016/j.ijpara.2006.12.002. [27] Yoshida S,Ioka D,Matsuoka H,et al. Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes[J]. Mol Biochem Parasitol,2001,113(1):89-96. DOI:10.1016/S0166-6851(00)00387-X. [28] Fang WG,Vega-Rodríguez J,Ghosh AK,et al. Development of transgenic fungi that kill human malaria parasites in mosquitoes[J]. Science,2011,331(6020):1074-1077. DOI:10.1126/science.1199115. [29] Shane JL,Grogan CL,Cwalina C,et al. Blood meal-induced inhibition of vector-borne disease by transgenic microbiota[J]. Nat Commun,2018,9:4127. DOI:10.1038/s41467-018-06580-9. [30] Cirimotich CM,Dong YM,Clayton AM,et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae[J]. Science,2011,332(6031):855-858. DOI:10.1126/science.1201618. [31] Cui CL,Wang Y,Liu JN,et al. A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection[J]. Nat Commun,2019,10:4298. DOI:10.1038/s41467-019-12323-1. [32] Cappelli A,Valzano M,Cecarini V,et al. Killer yeasts exert anti-plasmodial activities against the malaria parasite Plasmodium berghei in the vector mosquito Anopheles stephensi and in mice[J]. Parasit Vectors,2019,12(1):329. DOI:10.1186/s13071-019-3587-4. [33] Ricci I,Damiani C,Scuppa P,et al. The yeast Wickerhamomyces anomalus(Pichia anomala) inhabits the midgut and reproductive system of the Asian malaria vector Anopheles stephensi[J]. Environ Microbiol,2011,13(4):911-921. DOI:10.1111/j.1462-2920.2010.02395.x. [34] Bando H,Okado K,Guelbeogo WM,et al. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity[J]. Sci Rep,2013,3:1641. DOI:10.1038/srep01641. [35] Wang SB,Dos-Santos ALA,Huang W,et al. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria[J]. Science,2017,357(6358):1399-1402. DOI:10.1126/science.aan5478. [36] Bai L,Wang LL,Vega-Rodríguez J,et al. A gut symbiotic bacterium Serratia marcescens renders mosquito resistance to Plasmodium infection through activation of mosquito immune responses[J]. Front Microbiol,2019,10:1580. DOI:10.3389/fmicb.2019.01580. [37] Gao H,Bai L,Jiang YM,et al. A natural symbiotic bacterium drives mosquito refractoriness to Plasmodium infection via secretion of an antimalarial lipase[J]. Nat Microbiol,2021,6(6):806-817. DOI:10.1038/s41564-021-00899-8. |