[1] Gu W, Miller S, Chiu CY. Clinical metagenomic next-generation sequencing for pathogen detection[J]. Annu Rev Pathol, 2019, 14:319-338. DOI:10.1146/annurev-pathmechdis-012418-012751. [2] Schlaberg R, Chiu CY, Miller S, et al. Validation of metagenomic next-generation sequencing tests for universal pathogen detection[J]. Arch Pathol Lab Med, 2017, 141(6):776-786. DOI:10.5858/arpa.2016-0539-RA. [3] Palacios G, Druce J, Du L, et al. A new arenavirus in a cluster of fatal transplant-associated diseases[J]. N Engl J Med, 2008, 358(10):991-998. DOI:10.1056/NEJMoa073785. [4] Xu BL, Liu LC, Huang XY, et al. Metagenomic analysis of fever, thrombocytopenia and leukopenia syndrome (FTLS) in Henan province, China:discovery of a new bunyavirus[J]. PLoS Pathog, 2011, 7(11):e1002369. DOI:10.1371/journal.ppat.1002369. [5] 叶福强, 张锦海, 汪春晖. 纳米孔测序技术在病原体现场快速确认中的应用与挑战[J]. 中华卫生杀虫药械, 2019, 25(4):374-378. DOI:10.19821/j.1671-2781.2019.04.021.Ye FQ, Zhang JH, Wang CH. Application and challenge of nanopore sequencing technology in rapid identification of pathogens in the field[J]. Chin J Hyg Insect Equip, 2019, 25(4):374-378. DOI:10.19821/j.1671-2781.2019.04.021. [6] Castro-Wallace SL, Chiu CY, John KK, et al. Nanopore DNA sequencing and genome assembly on the international space station[J]. Sci Rep, 2017, 7(1):18022. DOI:10.1038/s41598-017-18364-0. [7] Kilianski A, Haas JL, Corriveau EJ, et al. Bacterial and viral identification and differentiation by amplicon sequencing on the MinION nanopore sequencer[J]. GigaScience, 2015, 4(1):12. DOI:10.1186/s13742-015-0051-z. [8] Hoenen T, Groseth A, Rosenke K, et al. Nanopore sequencing as a rapidly deployable Ebola outbreak tool[J]. Emerg Infect Dis, 2016, 22(2):331-334. DOI:10.3201/eid2202.151796. [9] Kafetzopoulou LE, Pullan ST, Lemey P, et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak[J]. Science, 2019, 363(6422):74-77. DOI:10.1126/science.aau9343. [10] Quick J, Grubaugh ND, Pullan ST, et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples[J]. Nat Protoc, 2017, 12(6):1261-1276. DOI:10.1038/nprot.2017.066. [11] Hansen S, Dill V, Shalaby MA, et al. Serotyping of foot-and-mouth disease virus using oxford nanopore sequencing[J]. J Virol Methods, 2019, 263:50-53. DOI: 10.1016/j.jviromet.2018.10.020. [12] Moon J, Jang Y, Kim N, et al. Diagnosis of Haemophilus influenzae pneumonia by nanopore 16S amplicon sequencing of sputum[J]. Emerg Infect Dis, 2018, 24(10):1944-1946. DOI: 10.3201/eid2410.180234. [13] Moon J, Kim N, Kim TJ, et al. Rapid diagnosis of bacterial meningitis by nanopore 16S amplicon sequencing:A pilot study[J]. Int J Med Microbiol, 2019, 309(6):151338. DOI:10.1016/j.ijmm.2019.151338. [14] Tessler M, Neumann JS, Afshinnekoo E, et al. Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing[J]. Sci Rep, 2017, 7(1):6589. DOI:10.1038/s41598-017-06665-3. [15] Rao HX, Li SJ, Lu L, et al. Genetic diversity of Bartonella species in small mammals in the Qaidam Basin, western China[J]. Sci Rep, 2021, 11(1):1735. DOI:10.1038/s41598-021-81508-w. [16] Weisburg WG, Barns SM, Pelletier DA, et al. 16S ribosomal DNA amplification for phylogenetic study[J]. J Bacteriol, 1991, 173(2):697-703. DOI:10.1128/jb.173.2.697-703.1991. [17] Zeng YH, Koblížek M, Li YX, et al. Long PCR-RFLP of 16S-ITS-23S rRNA genes:A high-resolution molecular tool for bacterial genotyping[J]. J Appl Microbiol, 2013, 114(2):433-447. DOI:10.1111/jam.12057. [18] Klindworth A, Pruesse E, Schweer T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies[J]. Nucleic Acids Res, 2013, 41(1):e1. DOI:10.1093/nar/gks808. [19] 马洁琼, 栗冬梅, 陈忠科, 等. 鼠传巴尔通体流行概况[J]. 疾病监测, 2018, 33(1):7-14. DOI:10.3784/j.issn.1003-9961.2018.01.004.Ma JQ, Li DM, Chen ZK, et al. Epidemiological characteristics of rodent-borne Bartonella[J]. Dis Surveill, 2018, 33(1):7-14. DOI:10.3784/j.issn.1003-9961.2018.01.004. [20] Serratrice J, Rolain JM, Granel B, et al. Bilateral retinal artery branch occlusions revealing Bartonella grahamii infection[J]. Rev Med Interne, 2003, 24(9):629-630. DOI:10.1016/s0248-8663(03)00224-8. [21] Kerkhoff FT, Bergmans AMC, van Der Zee A, et al. Demonstration of Bartonella grahamii DNA in ocular fluids of a patient with neuroretinitis[J]. J Clin Microbiol, 1999, 37(12):4034-4038. DOI:10.1128/JCM.37.12.4034-4038.1999. [22] Mexas AM, Hancock SI, Breitschwerdt EB. Bartonella henselae and B. elizabethae as potential canine pathogens[J]. J Clin Microbiol, 2002, 40(12):4670-4674. DOI:10.1128/jcm.40.12.4670-4674.2002. [23] Julieta C, Amairani MR, Sonia TC, et al. First report of bacillary angiomatosis by Bartonella elizabethae in an HIV-positive patient[J]. Am J Dermatopathol, 2019, 41(10):750-753. DOI:10.1097/DAD.0000000000001439. [24] Cuscó A, Catozzi C, Viñes J, et al. Microbiota profiling with long amplicons using Nanopore sequencing:full-length 16S rRNA gene and whole rrn operon[J]. F1000Research, 2018, 7:1755. DOI:10.12688/f1000research.16817.1. [25] Meerburg BG, Singleton GR, Kijlstra A. Rodent-borne diseases and their risks for public health[J]. Crit Rev Microbiol, 2009, 35(3):221-270. DOI:10.1080/10408410902989837. [26] 刘宁伟, 刘威, 黄留玉. 多重核酸检测技术研究进展[J]. 生物技术通讯, 2016, 27(4):596-600. DOI:10.3969/j.issn.1009-0002.2016.04.031.Liu NW, Liu W, Huang LY. Advances in research on nucleic acid-based multiplex detection technologies[J]. Lett Biotechnol, 2016, 27(4):596-600. DOI:10.3969/j.issn.1009-0002.2016.04.031. [27] 李颖, 麻锦敏. 宏基因组学测序技术在中重症感染中的临床应用专家共识(第一版)[J]. 中华危重病急救医学, 2020, 32(5):531-536. DOI:10.3760/cma.j.cn121430-20200228-00095.Li Y, Ma JM. Expert consensus for the application of metagenomic next generation sequencing in the pathogen diagnosis in clinical moderate and severe infections (first edition)[J]. Chin Crit Care Med, 2020, 32(5):531-536. DOI:10.3760/cma.j.cn121430-20200228-00095. [28] Quince C, Walker AW, Simpson JT, et al. Shotgun metagenomics, from sampling to analysis[J]. Nat Biotechnol, 2017, 35(9):833-844. DOI:10.1038/nbt.3935. [29] Tagini F, Greub G. Bacterial genome sequencing in clinical microbiology:A pathogen-oriented review[J]. Eur J Clin Microbiol Infect Dis, 2017, 36(11):2007-2020. DOI:10.1007/s10096-017-3024-6. [30] Mcnaughton AL, Roberts HE, Bonsall D, et al. Illumina and Nanopore methods for whole genome sequencing of hepatitis B virus (HBV)[J]. Sci Rep, 2019, 9(1):7081. DOI:10.1038/s41598-019-43524-9. [31] Koskela KA, Kalin-Mänttäri L, Hemmila H, et al. Metagenomic evaluation of bacteria from voles[J]. Vector Borne Zoonotic Dis, 2017, 17(2):123-133. DOI:10.1089/vbz.2016.1969. [32] Tiller RV, Gee JE, Frace MA, et al. Characterization of novel Brucella strains originating from wild native rodent species in North Queensland, Australia[J]. Appl Environ Microbiol, 2010, 76(17):5837-5845. DOI:10.1128/AEM.00620-10. [33] 武少卿, 刘日宏, 杨哲宇. 啮齿动物布鲁杆菌病的自然疫源性研究进展[J]. 疾病监测与控制, 2015, 9(4):246-247.Wu SQ, Liu RH, Yang ZY. The research progress of the natural focus Brucellosis of rodent[J]. J Dis Monitor Control, 2015, 9(4):246-247. [34] Greninger AL, Naccache SN, Federman S, et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis[J]. Genome Med, 2015, 7:99. DOI:10.1186/s13073-015-0220-9. [35] Tyler AD, Mataseje L, Urfano CJ, et al. Evaluation of Oxford nanopore’s MinION sequencing device for microbial whole genome sequencing applications[J]. Sci Rep, 2018, 8(1):10931. DOI:10.1038/s41598-018-29334-5. |