[1] Fire A,Xu SQ,Montgomery MK,et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature,1998,391(6669):806-811. DOI:10.1038/35888. [2] Campbell CL,Black IV WC,Hess AM,et al. Comparative genomics of small RNA regulatory pathway components in vector mosquitoes[J]. BMC Genomics,2008,9:425. DOI:10.1186/1471-2164-9-425. [3] Pham JW,Pellino JL,Lee YS,et al. A dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila[J]. Cell,2004,117(1):83-94. DOI:10.1016/S0092-8674(04)00258-2. [4] Schwarz DS,Hutvágner G,Du TT,et al. Asymmetry in the assembly of the RNAi enzyme complex[J]. Cell,2003,115(2):199-208. DOI:10.1016/S0092-8674(03)00759-1. [5] Killiny N,Kishk A. Delivery of dsRNA through topical feeding for RNA interference in the citrus sap piercing-sucking hemipteran,Diaphorina citri[J]. Arch Insect Biochem Physiol,2017,95(2):e21394. DOI:10.1002/arch.21394. [6] Huvenne H,Smagghe G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control:a review[J]. J Insect Physiol,2010,56(3):227-235. DOI:10.1016/j.jinsphys. 2009.10.004. [7] Yu XD,Killiny N. RNA interference of two glutathione S-transferase genes,Diaphorina citri DcGSTe2 and DcGSTd1,increases the susceptibility of Asian citrus psyllid (Hemiptera:Liviidae) to the pesticides fenpropathrin and thiamethoxam[J]. Pest Manag Sci,2018,74(3):638-647. DOI:10.1002/ps.4747. [8] Takahashi T,Hamada A,Miyawaki K,et al. Systemic RNA interference for the study of learning and memory in an insect[J]. J Neurosci Methods,2009,179(1):9-15. DOI:10.1016/j.jneumeth.2009.01.002. [9] Prentice K,Christiaens O,Pertry I,et al. RNAi-based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil Cylas puncticollis (Coleoptera:Brentidae)[J]. Pest Manag Sci,2017,73(1):44-52. DOI:10.1002/ps.4337. [10] Bona ACD,Chitolina RF,Fermino ML,et al. Larval application of sodium channel homologous dsRNA restores pyrethroid insecticide susceptibility in a resistant adult mosquito population[J]. Parasit Vectors,2016,9:397. DOI:10.1186/s13071-016-1634-y. [11] Airs PM,Bartholomay LC. RNA Interference for mosquito and mosquito-borne disease control[J]. Insects,2017,8(1):4. DOI:10.3390/insects8010004. [12] Balakrishna Pillai A,Nagarajan U,Mitra A,et al. RNA interference in mosquito:understanding immune responses,double-stranded RNA delivery systems and potential applications in vector control[J]. Insect Mol Biol,2017,26(2):127-139. DOI:10.1111/imb.12282. [13] Li T,Cao CW,Yang T,et al. A G-protein-coupled receptor regulation pathway in cytochrome P450-mediated permethrin-resistance in mosquitoes,Culex quinquefasciatus[J]. Sci Rep,2015,5:17772. DOI:10.1038/srep17772. [14] Lumjuan N,Rajatileka S,Changsom D,et al. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides[J]. Insect Biochem Mol Biol,2011,41(3):203-209. DOI:10.1016/j.ibmb. 2010.12.005. [15] Silva APB,Santos JMM,Martins AJ. Mutations in the voltage-gated sodium channel gene of anophelines and their association with resistance to pyrethroids-a review[J]. Parasit Vectors,2014,7:450. DOI:10.1186/1756-3305-7-450. [16] Davies TE,O'Reilly AO,Field LM,et al. Knockdown resistance to DDT and pyrethroids:from target-site mutations to molecular modelling[J]. Pest Manag Sci,2008,64(11):1126-1130. DOI:10.1002/ps.1617. [17] Weetman D,Wilding CS,Neafsey DE,et al. Candidate-gene based GWAS identifies reproducible DNA markers for metabolic pyrethroid resistance from standing genetic variation in East African Anopheles gambiae[J]. Sci Rep,2018,8(1):2920. DOI:10.1038/s41598-018-21265-5. [18] Hoa NT,Keene KM,Olson KE,et al. Characterization of RNA interference in an Anopheles gambiae cell line[J]. Insect Biochem Mol Biol,2003,33(9):949-957. DOI:10.1016/S0965-1748(03)00101-2. [19] Vadivalagan C,Karthika P,Murugan K,et al. Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera:Culicidae):influence of environmental barriers in South India[J]. Parasitol Res,2016,115(3):1149-1160. DOI:10.1007/s00436-015-4847-7. [20] Shi QQ,Song X,Lv YY,et al. Potential risks associated with Japanese encephalitis prevalence in Shandong province,China[J]. Vector Borne Zoonotic Dis,2019,19(8):640-645. DOI:10.1089/vbz.2018.2416. [21] Galiana-Arnoux D,Dostert C,Schneemann A,et al. Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila[J]. Nat Immunol,2006,7(6):590-597. DOI:10.1038/ni1335. [22] Salda? a MA,Etebari K,Hart CE,et al. Zika virus alters the microRNA expression profile and elicits an RNAi response in Aedes aegypti mosquitoes[J]. PLoS Negl Trop Dis,2017,11(7):e0005760. DOI:10.1371/journal.pntd.0005760. [23] Blair CD. Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission[J]. Future Microbiol,2011,6(3):265-277. DOI:10.2217/fmb.11.11. [24] Sánchez-Vargas I,Scott JC,Poole-Smith BK,et al. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway[J]. PLoS Pathog,2009,5(2),e1000299. DOI:10.1371/journal.ppat.1000299. [25] Sánchez-Vargas I,Scott JC,Poole-Smith BK,et al. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway[J]. PLoS Pathog,2009,5(2):e1000299. DOI:10.1371/journal.ppat.1000299. [26] Franz AWE,Sanchez-Vargas I,Adelman ZN,et al. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti[J]. Proc Natl Acad Sci USA,2006,103(11):4198-4203. DOI:10.1073/pnas.0600479103. [27] Yan Z,Hu HY,Jiang X,et al. Widespread expression of piRNA-like molecules in somatic tissues[J]. Nucleic Acids Res,2011,39(15):6596-6607. DOI:10.1093/nar/gkr298. [28] Varjak M,Maringer K,Watson M,et al. Aedes aegypti Piwi4 is a noncanonical PIWI protein involved in antiviral responses[J]. mSphere,2017,2(3):e00144-17. DOI:10.1128/mSphere.00144-17. [29] Azrag RS,Ibrahim K,Malcolm C,et al. Laboratory rearing of Anopheles arabiensis:impact on genetic variability and implications for Sterile Insect Technique (SIT) based mosquito control in northern Sudan[J]. Malar J,2016,15(1):432. DOI:10.1186/s12936-016-1484-2. [30] Whyard S,Erdelyan CN,Partridge AL,et al. Silencing the buzz:a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs[J]. Parasit Vectors,2015,8:96. DOI:10.1186/s13071-015-0716-6. [31] Carpenter VK,Drake LL,Aguirre SE,et al. SLC7 amino acid transporters of the yellow fever mosquito Aedes aegypti and their role in fat body TOR signaling and reproduction[J]. J Insect Physiol,2012,58(4):513-522. DOI:10.1016/j.jinsphys.2012. 01.005. [32] Moussian B. Recent advances in understanding mechanisms of insect cuticle differentiation[J]. Insect Biochem Mol Biol,2010,40(5):363-375. DOI:10.1016/j.ibmb.2010.03.003. [33] Liao CH,Upadhyay A,Liang J,et al. 3,4-Dihydroxyphenylacetaldehyde synthase and cuticle formation in insects[J]. Dev Comp Immunol,2018,83:44-50. DOI:10.1016/j.dci.2017.11.007. [34] Chen J,Lu HR,Zhang L,et al. RNA interference-mediated knockdown of 3,4-dihydroxyphenylacetaldehyde synthase affects larval development and adult survival in the mosquito Aedes aegypti[J]. Parasit Vectors,2019,12(1):311. DOI:10.1186/s13071-019-3568-7. [35] Elleuch J,Zribi Zghal R,Lacoix MN,et al. Evidence of two mechanisms involved in Bacillus thuringiensis israelensis decreased toxicity against mosquito larvae:genome dynamic and toxins stability[J]. Microbiol Res,2015,176:48-54. DOI:10.1016/j.micres.2015.04.007. [36] Ben-Dov E. Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins[J]. Toxins (Basel),2014,6(4):1222-1243. DOI:10.3390/toxins6041222. [37] Ni M,Ma W,Wang XF,et al. Next-generation transgenic cotton:pyramiding RNAi and Bt counters insect resistance[J]. Plant Biotechnol J,2017,15(9):1204-1213. DOI:10.1111/pbi. 12709. [38] Lim ZX,Robinson KE,Jain RG,et al. Diet-delivered RNAi in Helicoverpa armigera-progresses and challenges[J]. J Insect Physiol,2016,85:86-93. DOI:10.1016/j.jinsphys.2015.11.005. [39] Terradas G,Joubert DA,McGraw EA. The RNAi pathway plays a small part in Wolbachia-mediated blocking of dengue virus in mosquito cells[J]. Sci Rep,2017,7:43847. DOI:10.1038/srep43847. [40] Khan AA,Betel D,Miller ML,et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs[J]. Nat Biotechnol,2009,27(6):549-555. DOI:10.1038/nbt.1543. [41] Lundgren JG,Duan JJ. RNAi-based insecticidal crops:potential effects on nontarget species[J]. BioScience,2013,63(8):657-665. DOI:10.1525/bio.2013.63.8.8. [42] 王锦达. 赤拟谷盗RNAi及dsRNA脱靶效应的研究[D]. 南京:南京农业大学,2015. Wang JD. RNAi in Tribolium castaneum and the off target effect of dsRNA[D]. Nanjing:Nanjing Agricultural University,2015. [43] Garbutt JS,Belles X,Richards EH,et al. Persistence of double-s tranded RNA in insect hemolymph as a potential determiner of RNA interference success:evidence from Manduca sexta and Blattella germanica[J]. J Insect Physiol,2013,59(2):171-178. DOI:10.1016/j.jinsphys.2012.05.013. [44] Hakim RS,Baldwin K,Smagghe G. Regulation of midgut growth,development,and metamorphosis[J]. Annu Rev Entomol,2010,55(1):593-608. DOI:10.1146/annurev-ento-112408-085450. [45] Bolognesi R,Ramaseshadri P,Anderson J,et al. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte)[J]. PLoS One,2012,7(10):e47534. DOI:10.1371/journal.pone.0047534. [46] Liu JB,Wang RY,Ma DJ,et al. Branch-PCR constructed stable shRNA transcription nanoparticles have long-lasting RNAi effect[J]. Chem Bio Chem,2016,17(11):1038-1042. DOI:10.1002/cbic.201600047. [47] Joga MR,Zotti MJ,Smagghe G,et al. RNAi efficiency,systemic properties,and novel delivery methods for pest insect control:what we know so far[J]. Front Physiol,2016,7:553. DOI:10.3389/fphys.2016.00553. |