[1] Wallin R,Hutson SM. Warfarin and the vitamin K-dependent γ-carboxylation system[J]. Trends Mol Med,2004,10(7):299-302. DOI:10.1016/j.molmed.2004.05.003. [2] Pelz HJ,Rost S,Hünerberg M,et al. The genetic basis of resistance to anticoagulants in rodents[J]. Genetics,2005,170(4):1839-1847. DOI:10.1534/genetics.104.040360. [3] Blažić T,Jokić G,Götz M,et al. Brodifacoum as a first choice rodenticide for controlling bromadiolone-resistant Mus musculus[J]. J Stored Prod Res,2018,79:29-33. DOI:10.1016/j.jspr.2018.08.006. [4] Garg N,Singla N,Jindal V,et al. Studies on bromadiolone resistance in Rattus rattus populations from Punjab,India[J]. Pestic Biochem Phys,2017,139:24-31. DOI:10.1016/j.pestbp. 2017.04.005. [5] 易建荣,林立丰,伍任初,等. 广州市家栖鼠对第一代抗凝血灭鼠剂抗药性研究[J]. 中国媒介生物学及控制杂志,2004,15(5):357-359. DOI:10.3969/j.issn.1003-4692.2004.05.006. [6] 邓良利,孙毅,田汶佳. 成都地区抗药性褐家鼠维生素K环氧化物还原酶编码基因的变异[J]. 医学动物防制,2016,32(12):1353-1355,1432. [7] 刘泳廷,郑越平,林孟华,等. 贵阳市黄胸鼠对溴敌隆的抗性及大隆对抗性鼠杀灭效果观察[J]. 医学动物防制,2012,28(12):1341-1343. [8] 冯志勇,姚丹丹,黄立胜,等. 黄毛鼠对第一代抗凝血灭鼠剂的抗药性监测[J]. 植物保护学报,2007,34(4):420-424. DOI:10.3321/j.issn:0577-7518.2007.04.017. [9] 宋英,李宁,王大伟,等. 鼠类对抗凝血类灭鼠剂抗药性的遗传机制[J]. 中国科学:生命科学,2016,46(5):619-626. DOI:10.1360/N052016-00161. [10] Mooney J,Lynch MR,Prescott CV,et al. VKORC1 sequence variants associated with resistance to anticoagulant rodenticides in Irish populations of Rattus norvegicus and Mus musculus domesticus[J]. Sci Rep,2018,8(1):4535. DOI:10.1038/s41598-018-22815-7. [11] Cowan PE,Gleeson DM,Howitt RL,et al. Vkorc1 sequencing suggests anticoagulant resistance in rats in New Zealand[J]. Pest Manag Sci,2017,73(1):262-266. DOI:10.1002/ps.4304. [12] Goulois J,Chapuzet A,Lambert V,et al. Evidence of a target resistance to antivitamin K rodenticides in the roof rat Rattus rattus:identification and characterisation of a novel Y25F mutation in the Vkorc1 gene[J]. Pest Manag Sci,2016,72(3):544-550. DOI:10.1002/ps.4020. [13] Wang JS,Feng ZY,Yao DD,et al. Warfarin resistance in Rattus losea in Guangdong province,China[J]. Pestic Biochem Phys,2008,91(2):90-95. DOI:10.1016/j.pestbp.2008.01.007. [14] Huang BH,Feng ZY,Yue LF,et al. Warfarin resistance test and polymorphism screening in the VKORC1 gene in Rattus flavipectus[J]. J Pest Sci,2011,84(1):87-92. DOI:10.1007/s10340-010-0330-5. [15] 赵芳,张同作,苏建平,等. 青藏高原5种害鼠vkorc1基因的测序分析[J]. 草业科学,2016,33(6):1206-1212. [16] Goulois J,Lambert V,Legros L,et al. Adaptative evolution of the Vkorc1 gene in Mus musculus domesticus is influenced by the selective pressure of anticoagulant rodenticides[J]. Ecol Evol,2017,7(8):2767-2776. DOI:10.1002/ece3.2829. [17] Pelz HJ,Rost S,Müller E,et al. Distribution and frequency of VKORC1 sequence variants conferring resistance to anticoagulants in Mus musculus[J]. Pest Manag Sci,2012,68(2):254-259. DOI:10.1002/ps.2254. [18] Tanaka KD,Kawai YK,Ikenaka Y,et al. The genetic mechanisms of warfarin resistance in Rattus rattus found in the wild in Japan[J]. Pestic Biochem Phys,2012,103(2):144-151. DOI:10.1016/j.pestbp.2012.04.011. [19] Rost S,Pelz HJ,Menzel S,et al. Novel mutations in the VKORC1 gene of wild rats and mice-a response to 50 years of selection pressure by warfarin?[J]. BMC Genet,2009,10:4. DOI:10.1186/1471-2156-10-4. [20] Song Y,Endepols S,Klemann N,et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice[J]. Curr Biol,2011,21(15):1296-1301. DOI:10.1016/j.cub.2011.06.043. [21] Markussen MD,Heiberg AC,Fredholm M,et al. Differential expression of cytochrome P450 genes between bromadiolone-resistant and anticoagulant-susceptible Norway rats:a possible role for pharmacokinetics in bromadiolone resistance[J]. Pest Manag Sci,2008,64(3):239-248. DOI:10.1002/ps.1506. |