中国媒介生物学及控制杂志 ›› 2019, Vol. 30 ›› Issue (5): 498-501.DOI: 10.11853/j.issn.1003.8280.2019.05.004

• 论著 • 上一篇    下一篇

基于微分动力学方程的沈阳市肾综合征出血热疫情模拟研究

彭珵1, 胡祝敏1, 李艳君1, 关鹏1, 黄德生1,2   

  1. 1 中国医科大学公共卫生学院流行病学教研室, 辽宁 沈阳 110122;
    2 中国医科大学公共基础学院数学教研室, 辽宁 沈阳 110122
  • 收稿日期:2019-06-03 出版日期:2019-10-20 发布日期:2019-10-20
  • 通讯作者: 黄德生,Email:dshuang@cmu.edu.cn
  • 作者简介:彭珵,女,在读硕士,主要从事传染病流行病学研究,Email:cpeng@cmu.edu.cn
  • 基金资助:
    国家自然科学基金(71573275)

Epidemic simulation of hemorrhagic fever with renal syndrome in Shenyang, China: a kinetic study based on differential equations

PENG Cheng1, HU Zhu-min1, LI Yan-jun1, GUAN Peng1, HUANG De-sheng1,2   

  1. 1 School of Public Health, China Medical University, Shenyang 110122, Liaoning Province, China;
    2 School of Fundamental Sciences, China Medical University
  • Received:2019-06-03 Online:2019-10-20 Published:2019-10-20
  • Supported by:
    Supported by the National Natural Science Foundation of China (No. 71573275)

摘要: 目的 建立肾综合征出血热(HFRS)鼠间、鼠与人间的传播动力学模型,模拟辽宁省沈阳市HFRS发病情况,为制定预防控制措施提供依据。方法 收集1984-2017年沈阳市HFRS发病率、鼠带病毒率和鼠密度数据,在鼠群间建立易感者-感染者(SI)模型,鼠与人间建立易感者-感染者-移出者(SIR)模型以模拟HFRS发病情况。结果 1984-2017年沈阳市人群HFRS年平均发病率为3.88/10万;1984-2013年沈阳市年平均鼠密度为6.93%,鼠带病毒率为4.79%。基于微分动力学方程的预测发病率与实际发病率比较,平均误差绝对值为0.28;若免疫接种范围扩大时发病率将降低,如果将免疫接种范围从40.00%扩大至50.00%,2005-2017年沈阳市人群HFRS平均发病率将从1.97/10万下降至1.91/10万。结论 微分动力学方程可用于模拟沈阳市HFRS的传播动力学,免疫接种是有效预防HFRS的控制措施,应扩大免疫接种范围,以保护易感人群。

关键词: 肾综合征出血热, 发病率, 微分动力学模型

Abstract: Objective To establish a kinetic model for rat-to-rat and rat-to-human transmission of hemorrhagic fever with renal syndrome (HFRS), to simulate HFRS epidemics in Shenyang, China, and to provide a basis for the prevention and control of HFRS. Methods The incidence rates of HFRS in humans, virus-carrying rates among rodents, and density of rodents in Shenyang from 1984 to 2017 were collected. To simulate HFRS epidemics, a susceptible-infected model and a susceptible-infected-recovered model were established for rat-to-rat and rat-to-human transmission, respectively. Results From 1984 to 2017, the mean annual incidence rate of HFRS was 3.88/100 000 in Shenyang. From 1984 to 2013, the mean annual density of rodents and virus-carrying rate among rodents were 6.93% and 4.79%, respectively, in Shenyang. Compared with the actual incidence rate of HFRS, the incidence rate predicted by differential equations had a mean absolute error of 0.28. The expansion of vaccination coverage could lead to a lower incidence rate. If the vaccination coverage was expanded from 40.00% to 50.00%, the mean incidence of HFRS in Shenyang from 2005 to 2017 would decrease from 1.97/100 000 to 1.91/100 000. Conclusion Differential equations can be used to simulate the transmission dynamics of HFRS in Shenyang. Vaccination is an effective way to prevent HFRS. Vaccination coverage should be expanded to protect people susceptible to HFRS.

Key words: Hemorrhagic fever with renal syndrome, Incidence, Differential equation

中图分类号: