中国媒介生物学及控制杂志 ›› 2018, Vol. 29 ›› Issue (6): 657-661.DOI: 10.11853/j.issn.1003.8280.2018.06.029
宋晓, 史琦琪, 程鹏, 公茂庆
收稿日期:
2018-07-31
出版日期:
2018-12-20
发布日期:
2018-12-20
通讯作者:
公茂庆,Email:maoqingg@yahoo.com
作者简介:
宋晓,女,在读硕士,主要从事媒介昆虫抗药性治理与监测工作,Email:15020777096@163.com
基金资助:
SONG Xiao, SHI Qi-qi, CHENG Peng, GONG Mao-qing
Received:
2018-07-31
Online:
2018-12-20
Published:
2018-12-20
Supported by:
摘要: 昆虫抗药性机制的研究对病媒昆虫治理、抗药性监测及新型杀虫剂研发意义重大。近年来,随着昆虫基因组学、蛋白质组学、遗传学与分子生物学的应用,昆虫抗药性机制的研究已取得突破性进展,人们对昆虫的生理代谢、杀虫剂作用靶标、抗性行为等有了更深入的理解。研究表明,昆虫抗药性主要与解毒代谢增强、靶标敏感性降低有关,其本质源于基因变化,包括基因异常扩增、基因结构突变及表达水平改变等。该文对病媒昆虫抗药性机制的研究进行了分子水平的综述。
中图分类号:
宋晓, 史琦琪, 程鹏, 公茂庆. 病媒昆虫的抗药性分子机制研究进展[J]. 中国媒介生物学及控制杂志, 2018, 29(6): 657-661.
SONG Xiao, SHI Qi-qi, CHENG Peng, GONG Mao-qing. Research progress in molecular mechanisms of vector insect's resistance to insecticides[J]. Chines Journal of Vector Biology and Control, 2018, 29(6): 657-661.
[1] Xia XF,Sun BT,Gurr GM,et al. Gut microbiota mediate insecticide resistance in the diamondback moth,Plutella xylostella (L.)[J]. Front Microbiol,2018,9:25. DOI:10.3389/fmicb.2018.00025. [2] Denholm I,Devine GJ,Williamson MS. Insecticide resistance on the move[J]. Science,2002,297(5590):2222-2223. DOI:10.1126/science.1077266. [3] Dang K,Doggett SL,Veera Singham G,et al. Insecticide resistance and resistance mechanisms in bed bugs,Cimex spp. (Hemiptera:Cimicidae)[J]. Parasit Vectors,2017,10(1):318. DOI:10.1186/s13071-017-2232-3. [4] Ishak IH,Kamgang B,Ibrahim SS,et al. Pyrethroid resistance in malaysian populations of dengue vector Aedes aegypti is mediated by CYP9 family of cytochrome P450 genes[J]. PLoS Negl Trop Dis,2017,11(1):e0005302. DOI:10.1371/journal.pntd.0005302. [5] Gong YH,Li T,Feng YC,et al. The function of two P450s,CYP9M10 and CYP6AA7,in the permethrin resistance of Culex quinquefasciatus[J]. Sci Rep,2017,7(1):587. DOI:10.1038/s41598-017-00486-0. [6] Li XC,Schuler MA,Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics[J]. Annu Rev Entomol,2007,52:231-253. DOI:10.1146/annurev.ento.51.110104.151104. [7] Itokawa K,Komagata O,Kasai S,et al. A single nucleotide change in a core promoter is involved in the progressive overexpression of the duplicated CYP9M10 haplotype lineage in Culex quinquefasciatus[J]. Insect Biochem Mol Biol,2015,66:96-102. DOI:10.1016/j.ibmb.2015.10.006. [8] Ibrahim SS,Riveron JM,Bibby J,et al. Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector[J]. PLoS Genet,2015,11(10):e1005618. DOI:10.1371/journal.pgen.1005618. [9] Pridgeon JW,Zhang L,Liu NN. Overexpression of CYP4G19 associated with a pyrethroid-resistant strain of the German cockroach,Blattella germanica (L.)[J]. Gene,2003,314:157-163. DOI:10.1016/S0378-1119(03)00725-X. [10] Barnes KG,Irving H,Chiumia M,et al. Restriction to gene flow is associated with changes in the molecular basis of pyrethroid resistance in the malaria vector Anopheles funestus[J]. Proc Natl Acad Sci USA,2017,114(2):286-291. DOI:10.1073/pnas. 1615458114. [11] Yahouédo GA,Chandre F,Rossignol M,et al. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae[J]. Sci Rep,2017,7(1):11091. DOI:10.1038/s41598-017-11357-z. [12] Goindin D,Delannay C,Gelasse A,et al. Levels of insecticide resistance to deltamethrin,malathion,and temephos,and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies)[J]. Infect Dis Poverty,2017,6:38. DOI:10.1186/s40249-017-0254-x. [13] Lv Y,Wang WJ,Hong SC,et al. Comparative transcriptome analyses of deltamethrin-susceptible and-resistant Culex pipiens pallens by RNA-seq[J]. Mol Genet Genomics,2016,291(1):309-321. DOI:10.1007/s00438-015-1109-4. [14] Kasai S,Komagata O,Itokawa K,et al. Mechanisms of pyrethroid resistance in the dengue mosquito vector,Aedes aegypti:target site insensitivity,penetration,and metabolism[J]. PLoS Negl Trop Dis,2014,8(6):e2948. DOI:10.1371/journal.pntd. 0002948. [15] Itokawa K,Komagata O,Kasai S,et al. Testing the causality between CYP9M10 and pyrethroid resistance using the TALEN and CRISPR/Cas9 technologies[J]. Sci Rep,2016,6:24652. DOI:10.1038/srep24652. [16] Nardini L,Hunt RH,Dahan-Moss YL,et al. Malaria vectors in the Democratic Republic of the Congo:the mechanisms that confer insecticide resistance in Anopheles gambiae and Anopheles funestus[J]. Malar J,2017,16(1):448. DOI:10. 1186/s12936-017-2099-y. [17] Højland DH,Kristensen M. Analysis of differentially expressed genes related to resistance in spinosad-and neonicotinoid-resistant Musca domestica L. (Diptera:Muscidae) strains[J]. PLoS One,2017,12(1):e0170935. DOI:10.1371/journal.pone. 0170935. [18] Jing TX,Wu YX,Li T,et al. Identification and expression profiles of fifteen delta-class glutathione S-transferase genes from a stored-product pest,Liposcelis entomophila (Enderlein) (Psocoptera:Liposcelididae)[J]. Comp Biochem Physiol B Biochem Mol Biol,2017,206:35-41. DOI:10.1016/j.cbpb. 2017.01.008. [19] Mitchell SN,Rigden DJ,Dowd AJ,et al. Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae[J]. PLoS One,2014,9(3):e92662. DOI:10.1371/journal.pone.0092662. [20] Hu F,Dou W,Wang JJ,et al. Multiple glutathione S-transferase genes:identification and expression in oriental fruit fly,Bactrocera dorsalis[J]. Pest Manag Sci,2014,70(2):295-303. DOI:10.1002/ps.3558. [21] Djègbè I,Agossa FR,Jones CM,et al. Molecular characterization of DDT resistance in Anopheles gambiae from Benin[J]. Parasit Vectors,2014,7:409. DOI:10.1186/1756-3305-7-409. [22] Aravindan V,Muthukumaravel S,Gunasekaran K. Interaction affinity of Delta and Epsilon class glutathione-s-transferases (GSTs) to bind with DDT for detoxification and conferring resistance in Anopheles gambiae,a malaria vector[J]. J Vector Borne Dis,2014,51(1):8-15. [23] Riveron JM,Yunta C,Ibrahim SS,et al. A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector[J]. Genome Biol,2014,15(2):R27. DOI:10.1186/gb-2014-15-2-r27. [24] Carmbell PM,Newcomb RD,Russell RJ,et al. Two different amino acid substitutions in the ali-esterase,E3,confer alternative types of organophosphorus insecticide resistance in the sheep blowfly,Lucilia cuprina[J]. Insect Biochem Mol Biol,1998,28(3):139-150. [25] Shen XM,Liao CY,Lu XP,et al. Involvement of three esterase genes from Panonychus citri (McGregor) in fenpropathrin resistance[J]. Int J Mol Sci,2016,17(8):1361. DOI:10.3390/ijms17081361. [26] Grigoraki L,Lagnel J,Kioulos I,et al. Transcriptome profiling and genetic study reveal amplified carboxylesterase genes implicated in temephos resistance,in the asian tiger mosquito Aedes albopictus[J]. PLoS Negl Trop Dis,2015,9(5):e0003771. DOI:10.1371/journal.pntd.0003771. [27] Grigoraki L,Pipini D,Labbé P,et al. Carboxylesterase gene amplifications associated with insecticide resistance in Aedes albopictus:geographical distribution and evolutionary origin[J]. PLoS Negl Trop Dis,2017,11(4):e0005533. DOI:10.1371/journal.pntd.0005533. [28] Wang LL,Lu XP,Meng LW,et al. Functional characterization of an α-esterase gene involving malathion detoxification in Bactrocera dorsalis(Hendel)[J]. Pestic Biochem Physiol,2016,130:44-51. DOI:10.1016/j.pestbp.2015.12.001. [29] de Carvalho RA,Torres TT,de Azeredo-Espin AM. A survey of mutations in the Cochliomyia hominivorax (Diptera:Calliphoridae) esterase E3 gene associated with organophosphate resistance and the molecular identification of mutant alleles[J]. Vet Parasitol,2006,140(3/4):344-351. DOI:10.1016/j.vetpar.2006.04.010. [30] Smissaert HR. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate[J]. Science,1964,143(3602):129-131. DOI:10.1126/science.143.3602.129. [31] Feng XY,Yang C,Yang YC,et al. Distribution and frequency of G119S mutation in ace-1 gene within Anopheles sinensis populations from Guangxi,China[J]. Malar J,2015,14:470. DOI:10.1186/s12936-015-1000-0. [32] Guo DH,Luo JP,Zhou YN,et al. ACE:an efficient and sensitive tool to detect insecticide resistance-associated mutations in insect acetylcholinesterase from RNA-Seq data[J]. BMC Bioinform,2017,18:330. DOI:10.1186/s12859-017-1741-6. [33] Walsh SB,Dolden TA,Moores GD,et al. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance[J]. Biochem J,2001,359(Pt 1):175-181. DOI:10.1042/bj3590175. [34] Zhao MH,Dong YD,Ran X,et al. Point mutations associated with organophosphate and carbamate resistance in Chinese strains of Culex pipiens quinquefasciatus (Diptera:Culicidae)[J]. PLoS One,2014,9(5):e95260. DOI:10.1371/journal.pone.0095260. [35] Zoh DD,Ahoua Alou LP,Toure M,et al. The current insecticide resistance status of Anopheles gambiae (s.l.) (Culicidae) in rural and urban areas of Bouaké,Côte d'Ivoire[J]. Parasit Vectors,2018,11:118. DOI:10.1186/s13071-018-2702-2. [36] Ismail BA,Kafy HT,Sulieman JE,et al. Temporal and spatial trends in insecticide resistance in Anopheles arabiensis in Sudan:outcomes from an evaluation of implications of insecticide resistance for malaria vector control[J]. Parasit Vectors,2018,11:122. DOI:10.1186/s13071-018-2732-9. [37] Sun H,Tong KP,Kasai S,et al. Overcoming super-knock down resistance (super-kdr) mediated resistance:multi-halogenated benzyl pyrethroids are more toxic to super-kdr than kdr house flies[J]. Insect Mol Biol,2016,25(2):126-137. DOI:10.1111/imb.12206. [38] Scott JG. Evolution of resistance to pyrethroid insecticides in Musca domestica[J]. Pest Manag Sci,2017,73(4):716-722. DOI:10.1002/ps.4328. [39] Kasai S,Sun H,Scott JG. Diversity of knockdown resistance alleles in a single house fly population facilitates adaptation to pyrethroid insecticides[J]. Insect Mol Biol,2017,26(1):13-24. DOI:10.1111/imb.12267. [40] Gomes B,Purkait B,Deb RM,et al. Knockdown resistance mutations predict DDT resistance and pyrethroid tolerance in the visceral leishmaniasis vector Phlebotomus argentipes[J]. PLoS Negl Trop Dis,2017,11(4):e0005504. DOI:10.1371/journal.pntd.0005504. [41] Firooziyan S,Sadaghianifar A,Taghilou B,et al. Identification of novel voltage-gated sodium channel mutations in human head and body lice (Phthiraptera:Pediculidae)[J]. J Med Entomol,2017,54(5):1337-1343. DOI:10.1093/jme/tjx107. [42] Yellapu NK,Gopal J,Kasinathan G,et al. Molecular modelling studies of kdr mutations in voltage gated sodium channel revealed significant conformational variations contributing to insecticide resistance[J]. J Biomol Struct Dyn,2018,36(8):2058-2069. DOI:10.1080/07391102.2017.1341338. [43] Silva Martins WF,Wilding CS,Steen K,et al. Local selection in the presence of high levels of gene flow:evidence of heterogeneous insecticide selection pressure across Ugandan Culex quinquefasciatus populations[J]. PLoS Negl Trop Dis,2017,11(10):e0005917. DOI:10.1371/journal.pntd.0005917. [44] Al Nazawi AM,Aqili J,Alzahrani M,et al. Combined target site (kdr) mutations play a primary role in highly pyrethroid resistant phenotypes of Aedes aegypti from Saudi Arabia[J]. Parasit Vectors,2017,10:161. DOI:10.1186/s13071-017-2096-6. [45] Sayono S,Hidayati APN,Fahri S,et al. Distribution of voltage-gated sodium channel (Nav) alleles among the Aedes aegypti populations in central java province and its association with resistance to pyrethroid insecticides[J]. PLoS One,2016,11(3):e0150577. DOI:10.1371/journal.pone.0150577. [46] Plernsub S,Saingamsook J,Yanola J,et al. Temporal frequency of knockdown resistance mutations,F1534C and V1016G,in Aedes aegypti in Chiang Mai city,Thailand and the impact of the mutations on the efficiency of thermal fogging spray with pyrethroids[J]. Acta Trop,2016,162:125-132. DOI:10.1016/j.actatropica.2016.06.019. [47] Buckingham SD,Ihara M,Sattelle DB,et al. Mechanisms of action,resistance and toxicity of insecticides targeting GABA receptors[J]. Curr Med Chem,2017,24(27):2935-2945. DOI:10.2174/0929867324666170613075736. [48] Garrood WT,Zimmer CT,Gutbrod O,et al. Influence of the RDL A301S mutation in the brown planthopper Nilaparvata lugens on the activity of phenylpyrazole insecticides[J]. Pestic Biochem Physiol,2017,142:1-8. DOI:10.1016/j.pestbp.2017.01.007. [49] Ffrench-Constant RH,Steichen JC,Rocheleau TA,et al. A single-amino acid substitution in a gamma-aminobutyric acid subtype A receptor locus is associated with cyclodiene insecticide resistance in Drosophila populations[J]. Proc Natl Acad Sci USA,1993,90(5):1957-1961. DOI:10.1073/pnas.90.5.1957. [50] Low VL,Vinnie-Siow WY,Lim YAL,et al. First molecular genotyping of A302S mutation in the gamma aminobutyric acid (GABA) receptor in Aedes albopictus from Malaysia[J]. Trop Biomed,2015,32(3):554-556. [51] Taylor-Wells J,Brooke BD,Bermudez I,et al. The neonicotinoid imidacloprid,and the pyrethroid deltamethrin,are antagonists of the insect Rdl GABA receptor[J]. J Neurochem,2015,135(4):705-713. DOI:10.1111/jnc.13290. |
[1] | 赵春春, 周欣欣, 李文玉, 伦辛畅, 刘小波, 吴海霞, 王君, 刘起勇, 孟凤霞. 2020年中国13省份登革热媒介白纹伊蚊抗药性监测及分析研究[J]. 中国媒介生物学及控制杂志, 2022, 33(1): 30-37. |
[2] | 郑宇婷, 杨春梅, 杨明东, 姜进勇. 云南边境地区登革热媒介伊蚊生态学及抗药性监测[J]. 中国媒介生物学及控制杂志, 2022, 33(1): 38-43. |
[3] | 涂涛田, 肖汉森, 孟凤霞, 刘起勇, 刘小波, 何亚明, 季恒青. 重庆市2019年登革热暴发疫情应急控制后媒介伊蚊抗药性调查[J]. 中国媒介生物学及控制杂志, 2022, 33(1): 44-47. |
[4] | 姜洪雪, 姚丹丹, 林思亮, 冯志勇. 基于4种线粒体基因序列的广东省南雄市农区小型兽类DNA条形码分析[J]. 中国媒介生物学及控制杂志, 2022, 33(1): 48-53. |
[5] | 吕文祥, 程鹏, 彭荟, 王海洋, 王海防, 郭秀霞, 张崇星, 刘宏美, 公茂庆, 刘丽娟. 山东省东平湖地区2021年淡色库蚊抗药性调查[J]. 中国媒介生物学及控制杂志, 2022, 33(1): 104-107. |
[6] | 周欣欣, 李芬, 段文波, 马欣然, 宋秀平, 吴少英, 孟凤霞. 白纹伊蚊电压门控钠离子通道基因克隆及其生物信息学分析[J]. 中国媒介生物学及控制杂志, 2021, 32(6): 672-679. |
[7] | 周长印, 关晴晴, 戴雨琪, 刘洪霞, 钱坤. 淡色库蚊保幼激素受体基因CpMet的表达特性和功能分析[J]. 中国媒介生物学及控制杂志, 2021, 32(6): 680-685. |
[8] | 许雪莲, 韩阿祥, 叶诗晴, 关万春, 楼永良. 温州口岸截获蜱体内微生物群落结构、抗生素抗性基因及毒力因子的宏基因组分析[J]. 中国媒介生物学及控制杂志, 2021, 32(6): 763-771. |
[9] | 赵琼瑶, 邱星辉, 杨研, 罗兴, 宋晓明, 贾永朝. 四川省广元市中华按蚊杀虫剂靶标基因的多态性及抗性突变频率研究[J]. 中国媒介生物学及控制杂志, 2021, 32(5): 541-545. |
[10] | 郭秀霞, 程鹏, 刘丽娟, 王海防, 张崇星, 王怀位, 公茂庆. 白纹伊蚊紫外光敏感视蛋白基因的克隆及序列特征[J]. 中国媒介生物学及控制杂志, 2021, 32(5): 553-559. |
[11] | 胡远峰, 谭梁飞. 湖北省鄂州市2016-2020年蜚蠊密度及抗药性监测结果分析[J]. 中国媒介生物学及控制杂志, 2021, 32(5): 599-603. |
[12] | 栗冬梅, 周若冰, 李寿江, 鲁亮, 饶华祥, 宋秀平, 李庆多, 刘起勇. 纳米孔测序实时检测鼠传巴尔通体[J]. 中国媒介生物学及控制杂志, 2021, 32(4): 390-397. |
[13] | 王洋, 刘宏美, 郭秀霞, 宋晓, 王海洋, 程鹏, 王海防, 王怀位, 公茂庆. 淡色库蚊表皮蛋白CpCPR117基因克隆及表达分析[J]. 中国媒介生物学及控制杂志, 2021, 32(4): 436-440. |
[14] | 陈晓敏, 刘芹, 周良才, 吴丽群, 包继永, 吴太平. 武汉市2009-2015年家蝇对常用杀虫剂的抗药性调查[J]. 中国媒介生物学及控制杂志, 2021, 32(4): 468-471. |
[15] | 李峰, 崔士磊, 闫静, 丁新阳. 河南省南阳市德国小蠊对常用杀虫剂的抗药性调查[J]. 中国媒介生物学及控制杂志, 2021, 32(4): 472-474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
中国媒介生物学及控制杂志 © 2021 版权所有
地址:北京昌平区昌百路155号 电话:010-58900731
Email:bingmei@icdc.cn
网址:http://www.bmsw.net.cn
技术支持:010-62662699
总访问:
今日访问:
当前在线: