[1] Takken W, Knols BGJ. Malaria vector control:current and future strategies[J]. Trends Parasitol, 2009, 25(3):101-104.
[2] Njie M,Dilger E,Lindsay SW,et al. Importance of eaves to house entry by anopheline,but not culicine,mosquitoes[J]. J Med Entomol, 2009, 46(3):505-510.
[3] Imbahale SS,Mweresa CK,Takken W,et al. Development of environmental tools for anopheline larval control[J]. Parasit Vectors, 2011, 4:130. DOI:10.1186/1756-3305-4-130.
[4] Okumu FO,Govella NJ,Moore SJ,et al. Potential benefits, limitations and target product-profiles of odor-baited mosquito traps for malaria control in Africa[J]. PLoS One,2010,5(7):e11573. DOI:10.1371/journal.pone.0011573.
[5] Thomas MB, Godfray HCJ,Read AF,et al. Lessons from agriculture for the sustainable management of malaria vectors[J]. PLoS Med, 2012, 9(7):e1001262. DOI:10.1371/journal. pmed.1001262.
[6] Cook SM,Khan ZR,Pickett JA. The use of push-pull strategies in integrated pest management[J]. Annu Rev Entomol, 2007, 52:375-400.
[7] Pyke B,Rice M,Sabine B,et al. The push-pull strategy-behavioural control of Heliothis[J]. Aust Cotton Grow, 1987, 9:7-9.
[8] Martel JW,Alford AR,Dickens JC. Synthetic host volatiles increase efficacy of trap cropping for management of Colorado potato beetle,Leptinotarsa decemlineata (Say)[J]. Agric For Entomol, 2005, 7(1):79-86.
[9] Barnard DR,Xue RD. Laboratory evaluation of mosquito repellents against Aedes albopictus, Culex nigripalpus, and Ochlerotatus triseriatus(Diptera:Culicidae)[J]. J Med Entomol, 2004, 41(4):726-730.
[10] Fradin MS,Day JF. Comparative efficacy of insect repellents against mosquito bites[J]. N Engl J Med, 2002, 347(1):13-18.
[11] Costantini C,Birkett MA,Gibson G,et al. Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components[J]. Med Vet Entomol, 2001, 15(3):259-266.
[12] Blackwell A,Dyer C,Luntz AJM,et al. Field and laboratory evidence for a volatile pheromone produced by parous females of the Scottish biting midge,Culicoides impunctatus[J]. Physiol Entomol, 1994, 19(4):251-257.
[13] Blackwell A, Evans KA, Strang RHC, et al. Toward development of neem-based repellents against the Scottish Highland biting midge Culicoides impunctatus[J]. Med Vet Entomol, 2004, 18(4):449-452.
[14] Bhasin A,Luntz AJM,Mordue W. Field studies on efficacy of host odour baits for the biting midge Culicoides impunctatus in Scotland[J]. Med Vet Entomol, 2001, 15(2):147-156.
[15] Nalyanya G,Moore CB,Schal C. Integration of repellents, attractants,and insecticides in a "push-pull" strategy for managing German cockroach (Dictyoptera:Blattellidae) populations[J]. J Med Entomol, 2000, 37(3):427-434.
[16] WHO. World malaria report 2013[M]. Geneva:World Health Organization, 2013:23-28.
[17] Braks MAH, Meijerink J,Takken W. The response of the malaria mosquito,Anopheles gambiae,to two components of human sweat,ammonia and L-lactic acid,in an olfactometer[J]. Physiol Entomol, 2001, 26(2):142-148.
[18] Smallegange RC,Qiu YT,Bukovinszkiné-Kiss G,et al. The effect of aliphatic carboxylic acids on olfaction-based host-seeking of the malaria mosquito Anopheles gambiae sensu stricto[J]. J Chem Ecol, 2009, 35(8):933-943.
[19] Okumu FO,Killeen GF,Ogoma S,et al. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans[J]. PLoS One, 2010, 5(1):e8951. DOI:10.1371/journal.pone.0008951.
[20] Jawara M,Smallegange RC,Jeffries D,et al. Optimizing odor-baited trap methods for collecting mosquitoes during the malaria season in the Gambia[J]. PLoS One, 2009, 4(12):e8167. DOI:10.1371/journal.pone.0008167.
[21] Mukabana WR, Mweresa CK, Otieno B, et al. A novel synthetic odorant blend for trapping of malaria and other African mosquito species[J]. J Chem Ecol, 2012, 38(3):235-244.
[22] Lindsay LR,Surgeoner GA,Heal JD,et al. Evaluation of the efficacy of 3% citronella candles and 5% citronella incense for protection against field populations of Aedes mosquitoes[J]. J Am Mosq Control Assoc, 1996, 12(2 Pt 1):293-294.
[23] Seyoum A,Pålsson K,Kung'a S,et al. Traditional use of mosquito-repellent plants in western Kenya and their evaluation in semi-field experimental huts against Anopheles gambiae:ethnobotanical studies and application by thermal expulsion and direct burning[J]. Trans R Soc Trop Med Hyg, 2002, 96(3):225-231.
[24] Alten B,Caglar SS,Simsek FM,et al. Field evaluation of an area repellent system(Thermacell)against Phlebotomus papatasi (Diptera:Psychodidae) and Ochlerotatus caspius (Diptera:Culicidae)in Sanliurfa province, Turkey[J]. J Med Entomol, 2003, 40(6):930-934.
[25] Menger DJ,Omusula P,Holdinga M,et al. Field evaluation of a push-pull system to reduce malaria transmission[J]. PLoS One, 2015, 10(4):e0123415. DOI:10.1371/journal.pone.0123415.
[26] Jawara M, Awolola TS, Pinder M, et al. Field testing of different chemical combinations as odour baits for trapping wild mosquitoes in the Gambia[J]. PLoS One, 2011, 6(5):e19676. DOI:10.1371/journal.pone.0019676.
[27] Day JF,Sjogren RD. Vector control by removal trapping[J]. Am J Trop Med Hyg, 1994, 50(6 Suppl):S126-133.
[28] Maia MF,Onyango SP,Thele M,et al. Do topical repellents divert mosquitoes within a community?-health equity implications of topical repellents as a mosquito bite prevention tool[J]. PLoS One, 2013, 8(12):e84875. DOI:10.1371/journal. pone.0084875.
[29] Menger DJ,Otieno B,De Rijk M,et al. A push-pull system to reduce house entry of malaria mosquitoes[J]. Malaria J, 2014, 13:119. DOI:10.1186/1475-2875-13-119.
[30] Reddy MR, Overgaard HJ, Abaga S,et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island,Equatorial Guinea[J]. Malar J, 2011, 10:184. DOI:10.1186/1475-2875-10-184.
[31] Russell TL,Beebe NW,Cooper RD,et al. Successful malaria elimination strategies require interventions that target changing vector behaviours[J]. Malar J,2013,12:56. DOI:10.1186/1475-2875-12-56.
[32] Herrera-Varela M, Lindh J, Lindsay SW,et al. Habitat discrimination by gravid Anopheles gambiae sensu lato-a push-pull system[J]. Malar J,2014,13:133. DOI:10.1186/1475-2875-13-133.
[33] McPhatter LP,Debboun M. Attractiveness of botanical infusions to ovipositing Culex quinquefasciatus,Cx. nigripalpus, and Cx. erraticus in San Antonio,Texas[J]. J Am Mosq Control Assoc, 2009, 25(4):508-510.
[34] Rasgon JL. Wolbachia induces male-specific mortality in the mosquito Culex pipiens(LIN strain)[J]. PLoS One, 2012, 7(3):e30381. DOI:10.1371/journal.pone.0030381.
[35] Iwashita H,Dida GO,Sonye GO,et al. Push by a net,pull by a cow:can zooprophylaxis enhance the impact of insecticide treated bed nets on malaria control?[J]. Parasit Vectors, 2014, 7:52. DOI:10.1186/1756-3305-7-52.
[36] Mutuku FM, Alaii JA, Bayoh MN, et al. Distribution, description,and local knowledge of larval habitats of Anopheles gambiae s. l. in a village in western Kenya[J]. Am J Trop Med Hyg, 2006, 74(1):44-53.
[37] Roberts DR,Alecrim WD,Hshieh P,et al. A probability model of vector behavior:effects of DDT repellency,irritancy,and toxicity in malaria control[J]. J Vector Ecol, 2000, 25(1):48-61.
[38] Fay RW,Prince WH. A modified visual trap for Aedes aegypti[J]. Mosq News, 1970, 30(1):20-23.
[39] Maciel-de-Freitas R,Eiras AE,Lourenço-de-Oliveira R. Field evaluation of effectiveness of the BG-Sentinel,a new trap for capturing adult Aedes aegypti (Diptera:Culicidae)[J]. Mem Inst Oswaldo Cruz, 2006, 101(3):321-325.
[40] Reiter P. Comments ULV for Aedes aegypti control[J]. Vector Ecol Newsl, 1991, 22(2):3-4.
[41] Perich MJ,Davila G,Turner A,et al. Behavior of resting Aedes aegypti(Culicidae:Diptera)and its relation to ultra-low volume adulticide efficacy in Panama city,Panama[J]. J Med Entomol, 2000, 37(4):541-546.
[42] Thavara U,Tawatsin A,Chansang C,et al. Larval occurrence, oviposition behavior and biting activity of potential mosquito vectors of dengue on Samui Island, Thailand[J]. J Vector Ecol, 2001, 26(2):172-180.
[43] Manda H, Arce LM, Foggie T, et al. Effects of irritant chemicals on Aedes aegypti resting behavior:is there a simple shift to untreated "safe sites"?[J]. PLoS Negl Trop Dis, 2011, 5(7):e1243. DOI:10.1371/journal.pntd.0001243.
[44] Tainchum K,Polsomboon S,Grieco JP,et al. Comparison of Aedes aegypti (Diptera:Culicidae) resting behavior on two fabric types under consideration for insecticide treatment in a push-pull strategy[J]. J Med Entomol, 2013, 50(1):59-68.
[45] Salazar FV,Achee NL,Grieco JP,et al. Evaluation of a peridomestic mosquito trap for integration into an Aedes aegypti (Diptera:Culicidae) push-pull control strategy[J]. J Vector Ecol, 2012, 37(1):8-19.
[46] Kröckel U,Rose A,Eiras AE,et al. New tools for surveillance of adult yellow fever mosquitoes:comparison of trap catches with human landing rates in an urban environment[J]. J Am Mosq Contr Assoc, 2006, 22(2):229-238.
[47] Obermayr U,Ruther J,Bernier U,et al. Laboratory evaluation techniques to investigate the spatial potential of repellents for push and pull mosquito control systems[J]. J Med Entomol, 2012, 49(6):1387-1397.
[48] Mng' ong'o FC,Sambali JJ,Sabas E,et al. Repellent plants provide affordable natural screening to prevent mosquito house entry in tropical rural settings-results from a pilot efficacy study[J]. PLoS One, 2011, 6(10):e25927. DOI:10.1371/journal. pone.0025927.
[49] Paz-Soldan VA, Plasai V,Morrison AC,et al. Initial assessment of the acceptability of a push-pull Aedes aegypti control strategy in Iquitos,Peru and Kanchanaburi,Thailand[J]. Am J Trop Med Hyg, 2011, 84(2):208-217.
[50] Kopanic RJ Jr, Schal C. Coprophagy facilitates horizontal transmission of bait among cockroaches (Dictyoptera:Blattellidae)[J]. Environ Entomol, 1999, 28(3):431-438. |