[1] Cavanaugh DC, Marshall JD Jr. The influence of climate on the seasonal prevalence of plague in the Republic of Vietnam[J]. J Wildl Dis, 1972, 8(1):85-94.
[2] Stenseth NC, Samia NI, Viljugrein H, et al. Plague dynamics are driven by climate variation[J]. Proc Natl Acad Sci USA, 2006, 103(35):13110-13115.
[3] Snäll T, O'Hara RB, Ray C, et al. Climate-driven spatial dynamics of plague among prairie dog colonies[J]. Am Nat, 2008, 171(2):238-248.
[4] Xu L, Liu QY, Stige LC, et al. Nonlinear effect of climate on plague during the third pandemic in China[J]. Proc Natl Acad Sci USA, 2011, 108(25):10214-10219.
[5] Xu L, Stige LC, Kausrud KL, et al. Wet climate and transportation routes accelerate spread of human plague[J]. Proc Roy Soc B Biol Sci, 2014, 281(1780):20133159.
[6] Parmenter RR, Yadav EP, Parmenter CA, et al. Incidence of plague associated with increased winter-spring precipitation in New Mexico[J]. Am J Trop Med Hyg, 1999, 61(5):814-821.
[7] Collinge SK, Johnson WC, Ray C, et al. Testing the generality of a trophic-cascade model for plague[J]. Eco Health, 2005, 2 (2):102-112.
[8] Jiang GS, Liu J, Xu L, et al. Climate warming increases biodiversity of small rodents by favoring rare or less abundant species in a grassland ecosystem[J]. Integr Zool, 2013, 8(2): 162-174.
[9] Smith CR, Tucker JR, Wilson BA, et al. Plague studies in California:a review of long-term disease activity, flea-host relationships and plague ecology in the coniferous forests of the Southern Cascades and Northern Sierra Nevada mountains[J]. J Vector Ecol, 2010, 35(1):1-12.
[10] Wood SN. Generalized additive models: an introduction with R[M]. Boca Raton, FL:Chapman & Hall/CRC, 2006:100-202.
[11] Stige LC, Ottersen G, Brander K, et al. Cod and climate:effect of the North Atlantic Oscillation on recruitment in the North Atlantic[J]. Mar Ecol Prog Ser, 2006, 325:227-241.
[12] Kausrud KL, Viljugrein H, Frigessi A, et al. Climatically driven synchrony of gerbil populations allows large-scale plague outbreaks[J]. Proc Roy Soc B Biol Sci, 2007, 274(1621): 1963-1969.
[13] Ben Ari T, Gershunov A, Tristan R, et al. Interannual variability of human plague occurrence in the Western United States explained by tropical and North Pacific Ocean climate variability[J]. Am J Trop Med Hyg, 2010, 83(3):624-632.
[14] Ben Ari T, Gershunov A, Gage KL, et al. Human plague in the USA:the importance of regional and local climate[J]. Biol Lett, 2008, 4(6):737-740.
[15] Enscore RE, Biggerstaff BJ, Brown TL, et al. Modeling relationships between climate and the frequency of human plague cases in the southwestern United States, 1960-1997[J]. Am J Trop Med Hyg, 2002, 66(2):186-196.
[16] Pham HV, Dang DT, Minh NNT, et al. Correlates of environmental factors and human plague:an ecological study in Vietnam[J]. Int J Epidemiol, 2009, 38(6):1634-1641.
[17] Xu L, Schmid BV, Liu J, et al. The trophic responses of two different rodent - vector - plague systems to climate change[J]. Proc Roy Soc B Biol Sci, 2015, 282(1800):20141846.
[18] Brown JH, Ernest SKM. Rain and rodents:complex dynamics of desert consumers[J]. Bioscience, 2002, 52(11):979-987.
[19] Luis AD, Douglass RJ, Mills JN, et al. The effect of seasonality, density and climate on the population dynamics of Montana deer mice, important reservoir hosts for Sin Nombre hantavirus[J]. J Anim Ecol, 2010, 79(2):462-470.
[20] Lu N, Wilske B, Ni J, et al. Climate change in Inner Mongolia from 1955 to 2005-trends at regional, biome and local scales[J]. Environ Res Lett, 2009, 4(4):045006.
[21] 方喜业, 许磊, 刘起勇, 等. 中国鼠疫自然疫源地分型研究Ⅰ. 生态地理景观特征[J]. 中华流行病学杂志, 2011, 32(12): 1232-1236.
[22] 方喜业, 杨瑞馥, 刘起勇, 等. 中国鼠疫自然疫源地分型研究 Ⅱ. 鼠疫自然疫源地分型方法研究[J]. 中华流行病学杂志, 2012, 33(2):234-238.
[23] 方喜业, 周冬生, 崔玉军, 等. 中国鼠疫自然疫源地分型研究 Ⅳ. 鼠疫耶尔森菌生物型生物学特征的探讨[J]. 中华流行病学杂志, 2012, 33(6):626-629.
[24] 方喜业, 周冬生, 崔玉军, 等. 中国鼠疫自然疫源地分型研究 Ⅲ. 鼠疫耶尔森菌DFR/MLVA主要基因组型生物学特征[J]. 中华流行病学杂志, 2012, 33(5):536-539.
[25] 龚正达, 于心, 刘起勇, 等. 中国鼠疫自然疫源地分型研究Ⅵ. 鼠疫媒介生物学特征[J]. 中华流行病学杂志, 2012, 33(8): 818-822.
[26] 秦长育, 许磊, 张荣祖, 等. 中国鼠疫自然疫源地分型研究Ⅴ. 鼠疫宿主生物学特征[J]. 中华流行病学杂志, 2012, 33(7): 692-697. |