[1] Roh JY, Choi JY, Li MS, et al. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control[J]. J Microbiol Biotechnol, 2007, 17(4):547-559.
[2] Goldberg LJ, Margalit J. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitattus, Aedes aegypti and Culex pipiens[J]. Mosq News, 1977, 37(3):355-358.
[3] Margalit J, Dean D. The story of Bacillus thuringiensis var. israelensis (B.t.i.)[J]. J Am Mosq Control Assoc, 1985, 1(1):1-7.
[4] Tabashnik BE. Evaluation of synergism among Bacillus thuringiensis toxins[J]. Appl Environ Microbiol, 1992, 58(10):3343-3346.
[5] Poncet S, Délécluse A, Klier A, et al. Evaluation of synergistic interactions among the CryⅣA, CryⅣB, and CryⅣD toxic components of B. thuringiensis subsp. israelensis crystals[J]. J Invert Pathol, 1995, 66(2):131-135.
[6] Crickmore N, Bone EJ, Williams JA, et al. Contribution of the individual components of the δ?endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis[J]. FEMS Microbiol Lett, 1995, 131(3):249-254.
[7] Wirth MC, Jiannino JJ, Federici BA, et al. Synergy between toxins of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus[J]. J Med Entomol, 2004, 41(5):935-941.
[8] Merritt RW, Walker ED, Wilzbach MA, et al. A broad evaluation of B.t.i. for black fly (Diptera: Simuliidae) control in a Michigan river: efficacy, carry and nontarget effects on invertebrates and fish[J]. J Am Mosq Control Assoc, 1989, 5(3):397-415.
[9] Mulla MS, Chaney JD, Rodcharoen J. Control of nuisance midges (Diptera: Chironomidae) with the microbial larvicide Bacillus thuringiensis var. israelensis in a man-made lake in Southern California[J]. Bull Soc Vector Ecol, 1990, 15(2):176-184.
[10] Becker N, Ludwig M. Investigations on possible resistance in Aedes vexans field populations after a 10-year application of Bacillus thuringiensis israelensis[J]. J Am Mosq Control Assoc, 1993, 9(2):221-224.
[11] Paul A, Harrington LC, Zhang L, et al. Insecticide resistance in Culex pipiens in New York[J]. J Am Mosq Control Assoc, 2005, 21(3):305-309.
[12] Tetreau G, Stalinski R, David JP, et al. Monitoring resistance to Bacillus thuringiensis subsp. israelensis in the field by performing bioassays with each Cry toxin separately[J]. Mem Inst Oswaldo Cruz, 2013, 108(7):894-900.
[13] Goldman I, Arnold J, Carlton BC. Selection for resistance to Bacillus thuringiensis subspecies israelensis in field and laboratory populations of the mosquito Aedes aegypti[J]. J Invert Pathol, 1986, 47(3):317-324.
[14] Saleh MS, El?Meniawi FA, Kelada NL, et al. Resistance development in mosquito larvae Culex pipiens to the bacterial agent Bacillus thuringiensis var. israelensis[J]. J Appl Entomol, 2003, 127(1):29-32.
[15] Mittal P. Laboratory selection to investigate the development of resistance to Bacillus thuringiensis var. israelensis H-14 in Culex quinquefasciatus Say (Diptera: Culicidae)[J]. Nat Acad Lett India, 2005, 287(8):281-283.
[16] Paris M, Marcombe S, Coissac E, et al. Investigating the genetics of Bti resistance using mRNA tag sequencing: application on laboratory strains and natural populations of the dengue vector Aedes aegypti[J]. Evol Appl, 2013, 6(7):1012-1027.
[17] Tetreau G, Bayyareddy K, Jones CM, et al. Larval midgut modifications associated with B.t.i resistance in the yellow fever mosquito using proteomic and transcriptomic approaches[J]. BMC Genomics, 2012, doi:10.1186/1471-2164-13-248.
[18] Georghiou GP, Wirth MC. Influence of exposure to single versus multiple toxins of Bacillus thuringiensis var. israelensis on the development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae)[J]. Appl Environ Microbiol, 1997, 63(3): 1095-1101.
[19] Wirth MC. Mosquito resistance to bacterial larvicidal toxins[J]. Open Toxinol J, 2010, 3:126-140. doi:10.2174/1875414701003010126.
[20] Wirth MC, Délécluse A, Walton WE. Laboratory selection for resistance to Bacillus thuringiensis subsp. jegathesan or a component toxin, Cry11B, in Culex quinquefasciatus (Diptera: Culicidae)[J]. J Med Entomol, 2004, 41(3):435-441.
[21] Wirth MC, Georghiou GP. Cross?resistance among CryⅣ toxins of Bacillus thuringiensis subsp. israelensis in Culex quinquefasciatus (Diptera:Culicidae)[J]. J Econ Entomol, 1997, 90(6):1471-1477.
[22] Wirth MC, Delécluse A, Federici BA, et al. Variable cross resistance to Cry11B from Bacillus thuringiensis subsp. jegathesan in Culex quinquefasciatus (Diptera: Culicidae) resistant to single or multiple toxins from Bacillus thuringiensis subsp. israelensis[J]. Appl Environ Microbiol, 1998, 64(11):4174-4179.
[23] Wirth MC, Delécluse A, Walton WE. Lack of cross resistance to Cry19A from Bacillus thuringiensis subsp. jegathesan in Culex quinquefasciatus (Diptera: Culicidae) resistant to Cry toxins from Bacillus thuringiensis subsp. israelensis[J]. Appl Environ Microbiol, 2001, 67(4):1956-1958.
[24] Chueng PYK, Buster D, Hammock BD. Lack of mosquitocidal activity by the cytolytic protein of the Bacillus thuringiensis subsp. israelensis parasporal crystal[J]. Current Microbiol, 1987, 15(1): 21-23.
[25] Wirth MC, Georghiou GP, Federici BA. CytA enables CryⅣ endotoxins of Bacillus thuringiensis to overcome high levels of CryⅣ resistance in the mosquito, Culex quinquefasciatus[J]. Proc Natl Acad Sci USA, 1997, 94(20):10536-10540.
[26] Wirth MC, Park HW, Walton WE, et al. Cyt1A of Bacillus thuringiensis delays resistance to Cry11A in the mosquito Culex quinquefasciatus[J]. Appl Environ Microbiol, 2005, 71(1): 185-189.
[27] Pérez C, Fernandez LL, Sun J, et al. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane?bound receptor[J]. Proc Natl Acad Sci, 2005, 102(51): 18303-18308.
[28] Pérez C, Munoz?Garcia C, Portugal LC, et al. Bacillus thuringiensis subsp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre?pore oligomeric structure[J]. Cell Microbiol, 2007, 9(12):2931-2937.
[29] Wirth MC, Delécluse A, Walton WE. Cyt1Ab1 and Cyt2Ba1 from Bacillus thuringiensis subsp. medellin and B. thuringiensis subsp. israelensis synergize Bacillus sphaericus against Aedes aegypti and resistant Culex quinquefasciatus (Diptera: Culicidae)[J]. Appl Environ Microbiol, 2001, 67(7):3280-3284.
[30] Chenniappan K, Ayyadurai N. Synergistic activity of Cyt1A from Bacillus thuringiensis subsp. israelensis with Bacillus sphaericus B101 H5a5b against Bacillus sphaericus B101 H5a5b-resistant strains of Anopheles stephensi Liston (Diptera: Culicidae)[J]. Parasitol Res, 2011, 110(1):381-388.
[31] Wirth MC, Walton WE, Federici BA. Cyt1A from Bacillus thuringiensis restores toxicity of Bacillus sphaericus against resistant Culex quinquefasciatus (Diptera: Culicidae)[J]. J Med Entomol, 2000, 37(3):401-407.
[32] Wirth MC, Jiannino JA, Federici BA, et al. Evolution of resistance toward Bacillus sphaericus or a mixture of B. sphaericus+Cyt1A from Bacillus thuringiensis, in the mosquito, Culex quinquefasciatus (Diptera: Culicidae)[J]. J Invertebr Pathol, 2005, 88(2):154-162.
[33] Wirth MC, Zaritsky A, Ben?Dov E, et al. Cross?resistance spectra of Culex quinquefasciatus resistant to mosquitocidal toxins of Bacillus thuringiensis towards recombinant Escherichia coli expressing genes from B. thuringiensis ssp. israelensis[J]. Environ Microbiol, 2007, 9(6):1393-1401.
[34] Wirth MC, Yang Y, Walton WE, et al. Mtx toxins synergize Bacillus sphaericus and Cry11Aa against susceptible and insecticide?resistant Culex quinquefasciatus larvae[J]. Appl Environ Microbiol, 2007, 73(19):6066-6071.
[35] Wirth MC, Berry C, Walton WE, et al. Mtx toxins from Lysinibacillus sphaericus enhance mosquitocidal cry?toxin activity and suppress cry?resistance in Culex quinquefasciatus[J]. J Insect Pathol, 2013, 115(1):62-67.
[36] Ahmed I, Yokota A, Yamazoe A, et al. Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov.[J]. Int J Syst Evol Microbiol, 2007, 57(Pt 5):1117-1125.
[37] Wirth MC, Federici BA, Walton WE. Cyt1A from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae)[J]. Appl Environ Microbiol, 2000, 66(3):1093-1097.
[38] Rodcharoen J, Mulla MS. Resistance development in Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus[J]. J Econ Entomol, 1994, 87(7):1133-1140.
[39] Nielsen?LeRoux C, Charles JF, Thiéry I, et al. Resistance in a laboratory population of Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus binary toxin is due to a change in the receptor on midgut brush?border membrane[J]. Eur J Biochem, 1995, 228(1):206-210.
[40] Nielsen?LeRoux C, Pasquier F, Charles JF, et al. Resistance to Bacillus sphaericus involves different mechanisms in Culex pipiens (Diptera:Culicidae) larvae[J]. J Med Entomol, 1997, 34(3):321-327.
[41] Nielsen?LeRoux C, Rao D, Rodcharoen J, et al. Various levels of cross?resistance to Bacillus sphaericus strains in Culex pipiens (Diptera: Culicidae) colonies resistant to B. sphaericus strain 2362[J]. Appl Environ Microbiol, 2001, 67(11):5049-5054.
[42] Wirth MC, Georghiou GP, Malik JI, et al. Laboratory selection for resistance to Bacillus sphaericus in Culex quinquefasciatus (Diptera: Culicidae) from California, USA[J]. J Med Entomol, 2000, 37(4):534-540.
[43] Zahiri NS, Su T, Mulla MS. Strategies for the management of resistance in mosquito to the microbial control agent Bacillussphaericus[J]. J Med Entomol, 2002, 39(3):513-520.
[44] Pei G, Oliveira CMF, Yuan Z, et al. A strain of Bacillus sphaericus causes slower development of resistance in Culex quinquefasciatus[J]. Appl Environ Microbiol, 2002, 88(6):3003-3009.[45] Zahiri NS, Mulla MS. Susceptibility profile of Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus on selection with rotation and mixture of B. sphaericus and B. thuringiensis israelensis[J]. J Med Entomol, 2003, 40(5):672-677.
[46] Oliveira CMF, Silva?Filha MH, Nielsen?LeRoux C, et al. Inheritance and mechanism of resistance to Bacillus sphaericus in Culex quinquefasciatus (Diptera: Culicidae) from China and Brazil[J]. J Med Entomol, 2004, 41(1):58-64.
[47] Adak T, Mittal PK, Raghavendra K, et al. Resistance to Bacillus sphaericus in Culex quinquefasciatus Say 1823[J]. Curr Sci, 1995, 69: 695-698.
[48] Rao DR, Mani TR, Rajendran R, et al. Development of a high?level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India[J]. J Am Mosq Control Assoc, 1995, 11(1):1-5.
[49] Poopathi S, Mani TR, Raghunatha D, et al. Cross?resistance to Bacillus sphaericus strains in Culex quinquefasciatus resistant to B. sphaericus 1593M[J]. Southeast Asian J Trop Med Pub Health, 1999, 30(3):478-481.
[50] Yuan Z, Zhang Y, Cai Q, et al. High?level field resistance to Bacillus sphaericus C3-41 in Culex quinquefasciatus from Southern China[J]. Biocon Sci Technol, 2000, 10:41-49.
[51] Amorim LB, Oliveira CMF, Rios EM, et al. Development of Culex quinquefasciatus resistance to Bacillus sphaericus strain IAB59 needs long term selection pressure[J]. Biol Control, 2007, 42(2):155-160.
[52] Sinègre G, Babinot M, Quermal JM, et al. First field occurrence of Culex pipiens resistance to Bacillus sphaericus in Southern France: 1994. P17, Proc 8th European Meet Soc Vector Ecol, September 5-8, 1994[R]. Barcelona, Spain: Society for Vector Ecology, Santa Ana, California, 1997.
[53] Silva?Filha MH, Regis L, Nielsen?LeRoux C, et al. Low level resistance to Bacillus sphaericus in a field?treated population of Culex quinquefasciatus (Diptera: Culicidae)[J]. J Econ Entomol, 1995, 88(3):525-530.
[54] Chevillon C, Bernard C, Marquine M, et al. Resistance to Bacillus sphaericus in Culex pipiens (Diptera: Culicidae): interaction between recessive mutants and evolution in Southern France[J]. J Med Entomol, 2001, 38(5):657-664.
[55] Nielsen?Leroux C, Pasteur N, Prètre J, et al. High resistance to Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae): the complex situation of west Mediterranean countries[J]. J Med Entomol, 2002, 39(5):729-735.
[56] Mulla MS, Thavara U, Tawatsin A, et al. Emergence of resistance and resistance management in field populations of tropical Culex quinquefasciatus to the microbial control agent Bacillus sphaericus[J]. J Am Mosq Control Assoc, 2003, 19(1):39-46.
[57] Su T, Mulla MS. Documentation of high level Bacillus sphaericus?resistance in tropical Culex quinquefasciatus populations from Thailand [J]. J Am Mosq Control Assoc, 2004, 20(4):405-411.
[58] Wei S, Cai Q, Cai Y, et al. Lack of cross?resistance to Mtx1 from Bacillus sphaericus in B. sphaericus?resistant Culex quinquefasciatus (Diptera:Culicidae)[J]. Pest Manag Sci, 2007, 63(2):190-193.
[59] Rodcharoen J, Mulla MS. Cross?resistance to Bacillus sphaericus strains in Culex quinquefasciatus[J]. J Am Mosq Control Assoc, 1996, 12(2):247-250.
[60] Yuan ZM, Pei GF, Regis L, et al. Cross resistance between strains of Bacillus sphaericus but not B. thuringiensis israelensis in colonies of the mosquito Culex quinquefasciatus[J]. Med Vet Entomol, 2003, 17(3):251-256.
[61] Mittal PK, Adak T, Sharma VP. Variations in response to Bacillus sphaericus toxins in different strains of Anopheles stephensi Liston[J]. Ind J Malariol, 1998, 35(4):178-183.
[62] Poopathi S, Kabilan L, Mani TR, et al. Observation of low tolerance to Bacillus thuringiensis var israelensis in Culex quinquefasciatus resistant to Bacillus sphaericus[J]. Entomon, 2000, 25(3):201-208.
[63] Mittal PK, Adak T, Subbaro SK. Inheritance of resistance to Bacillus sphaericus toxins in a laboratory selected strain of Anopheles stephensi (Diptera: Culicidae) and its response to Bacillus thuringiensis var. israelensis[J]. Curr Sci, 2005, 89(3):442-443.
[64] Darboux I, Pauchet Y, Castella C, et al. Loss of the membrane anchor of the target receptor is a mechanism of bioinsecticide resistance[J]. Proc Natl Acad Sci USA, 2002, 99(9):5830-5835.
[65] Darboux I, Charles JF, Pauchet Y, et al. Transposon mediated resistance to Bacillus sphaericus in a field?evolved population of Culex pipiens (Diptera: Culicidae)[J]. Cell Microbiol, 2007, 9(8):2022-2029.
[66] Rom?o TP, Chalegre KDD, Key S, et al. A second independent resistance mechanism to Bacillus sphaericus binary toxin targets its α?glucosidase receptor in Culex quinquefasciatus[J]. FEBS J, 2006, 273(7):1556-1568.
[67] Wirth MC, Walton WE, Federici BA. Evolution of resistance to the Bacillus sphaericus Bin toxin is phenotypically masked by combination with the mosquitocidal proteins of Bacillus thuringiensis subspecies israelensis[J]. Environ Microbiol, 2010, 12(5):1154-1160.
[68] Poopathi S, Mani TR, Raghunatha RD, et al. Evaluation of synergistic interaction between Bacillus sphaericus and Bacillus thuringiensis var. israelensis against Culex quinquefasciatus resistant and susceptible to B. sphaericus 1593M[J]. J Ecobiol, 1999, 11(4):289-298.
[69] Sun F, Yuan Z, Li T, et al. Reduction of resistance of Culex pipiens larvae to the binary toxin from Bacillus sphaericus by coexpression of cry4Ba from Bacillus thuringiensis subsp. israelensis with the binary toxin[J]. World J Microbiol Biotechnol, 2001, 17(4):385-389.
[70] Park HW, Bideshi DK, Federici BA. Recombinant strain of Bacillus thuringiensis producing Cyt1A, Cry11B, and the Bacillus sphaericus binary toxin[J]. Appl Environ Microbiol, 2003, 69(2): 1331-1334.[71] Park HW, Bideshi DK, Wirth MC, et al. Recombinant larvicidal bacteria with markedly improved efficacy against Culex vectors of West Nile virus[J]. Am J Trop Med Hyg, 2005, 72(6):732-738.[72] Federici BA, Park HW, Bideshi DK, et al. Developing recombinant bacteria for control of mosquito larvae[J]. J Am Mosq Control Assoc, 2007, 23 Suppl:S164-175.
[73] Poopathi S, Mani TR, Rao DR, et al. Evaluation of synergistic interaction between Bacillus sphaericus and a neem?based biopesticide on Bsph?susceptible Culex quinquefasciatus Say Larvae [J]. Int J Trop Insect Sci, 2002, 22(4):303-306.
[74] Mertz FP, Yao R. Saccharopolyspora spinosa sp. nov. isolated from soil collected in a sugar mill rum still[J]. Int J Syst Evol Microbiol, 1990, 40(1):34-39.
[75] Hertlein MB, Mayrotas C, Joussesume C, et al. A review of spinosad as a natural product for larval mosquito control[J]. J Am Mosq Control Assoc, 2010, 26(1):67-87.
[76] Sparks TC, Dripps JE, Watson GB, et al. Resistance and cross?resistance to the spinosyn-a review and analysis[J]. Pestic Biochem Physiol, 2012, 102(1):1-10.
[77] Geng CX, Watson GB, Sparks TC. Nicotinic acetylcholine receptors as spinosyn targets for insect pest management[J]. Adv Insect Physiol, 2013, 44:101-210.
[78] Su T, Cheng ML. Resistance development in Culex quinquefasciatus to spinosad: a preliminary report[J]. J Am Mosq Control Assoc, 2012, 28(3):263-267.
[79] Su T, Cheng ML. Laboratory selection of resistance to spinosad in Culex quinquefasciatus (Diptera: Culicidae)[J]. J Med Entomol, 2014, 51(2):421-427.
[80] Su T, Cheng ML. Cross resistances in spinosad?resistant Culex quinquefasciatus (Diptera: Culicidae)[J]. J Med Entomol, 2014, 51(2):428-435.
[81] Dame DA, Wichterman GJ, Hornby JA. Mosquito (Aedes taeniorhynchus) resistance to methoprene in an isolated habitat[J]. J Am Mosq Control Assoc, 1998, 14(2):200-203.
[82] Cornel AJ, Stanich MA, Farley D, et al. Methoprene tolerance in Aedes nigromaculis in Fresno county, California[J]. J Am Mosq Control Assoc, 2000, 16(3):223-238.
[83] Cornel AJ, Stanich MA, McAbee RD, et al. High level methoprene resistance in the mosquito Ochlerotatus nigromaculis (Ludlow) in central California[J]. Pest Manag Sci, 2002, 58(8):791-798.
[84] Schaefer CH, Mulligan FS III. Potential for resistance to pyriproxyfen: a promising new mosquito larvicide[J]. J Am Mosq Control Assoc, 1991, 7(3):409-411.
[85] Rodcharoen J, Mulla MS. Biological fitness of Culex quinquefasciatus (Diptera: Culicidae) susceptible and resistant to Bacillus sphaericus[J]. J Med Entomol, 1997, 34(1):5-10.
[86] Oliveira CMD, Costa Filho F, Beltran JFN, et al. Biological fitness of a Culex quinquefasciatus population and its resistance to Bacillus sphaericus[J]. J Am Mosq Control Assoc, 2003, 19(2):125-129.
[87] Rivero A, Vézilier J, Weill M, et al. Insecticide control of vector?borne diseases: When is insecticide resistance a problem?[J]. PLoS Pathog, 2010, 6(8):e1001000.
[88] Alout H, Ndam NT, Sandeu MM, et al. Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates[J]. PLoS One, 2013, 8(5): e63849.
[89] Liu R, Gourley SA. Resistance to larvicides in mosquito populations and how it could benefit malaria control[J]. Eur J Appl Math, 2013, 24(3):415-436. |