中国媒介生物学及控制杂志 ›› 2011, Vol. 22 ›› Issue (6): 547-549.

• 论著 • 上一篇    下一篇

蚊虫密度的气象影响因素分析

代培芳1, 赵俊英1, 刘美德2, 孔祥盛1, 翟如芳1, 王海娇1, 程璟侠1   

  1. 1. 山西省疾病预防控制中心病媒生物防控科/免疫规划科,山西太原 030012;
    2. 军事医学科学院微生物流行病研究所病原微生物生物安全国家重点实验室
  • 收稿日期:2011-07-12 出版日期:2011-12-20 发布日期:2011-12-20
  • 通讯作者: 程璟侠,Email: chengjingxia007@163.com
  • 作者简介:代培芳(1979-),女,硕士,主管技师,从事病媒生物学及控制研究。Email: sxcdcbmkdpf@yahoo.com.cn
  • 基金资助:

    山西省自然科学基金(2008011070);山西省卫生厅科技攻关计划项目(200759,20100140)

Analysis on the influence of meteorological parameters on mosquito density

DAI Pei-fang1, ZHAO Jun-ying1, LIU Mei-de2, KONG Xiang-sheng1, ZHAI Ru-fang1, WANG Hai-jiao1, CHENG Jing-xia1   

  1. 1. Shanxi Center for Disease Control and Prevention, Taiyuan 030012, Shanxi Province, China;
    2. Beijing Institute of Micobiology of Epidemiology, State Key Laboratory of Pathogen and Biosecurity
  • Received:2011-07-12 Online:2011-12-20 Published:2011-12-20
  • Supported by:

    Supported by the Natural Science Foundation of Shanxi Province(No. 2008011070)and Scientific and Technological Research Project of the Health Department of Shanxi Province(No. 200759, 20100140)

摘要:

目的 探讨山西省运城市某流行性乙型脑炎(乙脑)高发县蚊虫密度与气象因素之间的关系,筛选适合因子预测蚊虫密度变化趋势。方法 监测2007-2009年5-10月运城市某县蚊虫密度并收集同期气象资料,气象数据经膨化处理,用SPSS 17.0软件分析两者相关性,并用逐步回归分析建立蚊虫密度的气象因子拟合模型。结果 蚊虫季节消长曲线为单峰型,5月出现,8月达高峰,10月消亡。蚊虫密度与月平均温度、月平均气压等相关,与月日照、相对湿度无关。逐步回归分析得出蚊虫密度的气压回归方程,ap02(当月及前2个月的平均气压)和ap1(提前1个月的平均气压)有良好的拟合效果,两者相比ap1具有更好的实际操作性。结论 气象因素对蚊虫密度有重要影响,可以利用气压拟合模型预测蚊虫密度变化趋势。

关键词: 蚊虫密度, 气象因素, 拟合模型, 传染病防控

Abstract:

Objective To identify the relationship between mosquito density and meteorological parameters for selection of appropriate predicting factors for the change of mosquito density in Yuncheng, Shanxi. Methods Spearman's rank correlation was used in the analysis of the correlation between meteorological parameters and mosquito density per month from 2007 to 2009. Stepwise regression analysis was performed to model the mosquito density change regarding meteorological parameters. Results Single wave was observed in the mosquito seasonal succession curve, indicating that mosquitoes arose early in July, reached a peak in August, and disappeared in October. It was found that mosquito density was correlated with temperature and atmospheric pressure other than sunshine time and relative humidity. Stepwise regression analysis showed that ap02 and ap1 could be used for predicting mosquito density, though ap1 was more practical. Ap02 reflected the average atmospheric pressure of the present month as well as the last two months, and ap1 indicated the atmospheric pressure in the last month. Conclusion Since mosquito density was correlated with meteorological parameters, its change could be predicted by an atmospheric pressure fitting model.

Key words: Mosquito density, Meteorological parameters, Predicting model, Disease control

中图分类号: