中国媒介生物学及控制杂志 ›› 2010, Vol. 21 ›› Issue (5): 482-485.

• 技术方法 • 上一篇    下一篇

数学模型在输入型登革热暴发综合防治中的应用

施家威1,帅春江2,毛国华1,施南峰3   

  1. 1. 宁波市疾病预防控制中心(浙江宁波315010);
    2. 宁波市江北区疾病预防控制中心;
    3. 慈溪市疾病预防控制中心
  • 收稿日期:2010-07-05 出版日期:2010-10-20 发布日期:2010-10-20
  • 作者简介:施家威(1981-),男,硕士,主管技师,主要从事环境监测分析及卫生统计。Email: shijw@nbcdc.org.cn

Application of mathematical models in integrated control of imported dengue fever outbreaks

SHI Jia-wei1, SHUAI Chun-jiang2, MAO Guo-hua1, SHI Nan-feng3   

  1. 1. Ningbo Center for Disease Control and Prevention, Ningbo 315010, Zhejiang Province, China;
    2. Jiangbei Center for Disease Control and Prevention, Ningbo;
    3. Cixi Center for Disease Control and Prevention
  • Received:2010-07-05 Online:2010-10-20 Published:2010-10-20

摘要:

目的 通过参考Newton登革热传播模型及SIR仓室模型,建立登革热数学模型,以深入研究输入型登革热的流行规律和评价不同防治措施的效果。方法 建立当时实际相吻合的登革热传播模型,模拟描述2004年浙江省慈溪市逍林镇登革热暴发流行,同时结合当时实际研究登革热流行情况。结果 根据模型可得出总的人均蚊媒密度阈值为2.4只,登革热人群免疫抗体水平>67.8%时,才有可能在登革热病原体输入后不发生登革热的流行暴发。结论 数学模型模拟结果与现场调查比较接近,特别是暴发的中后期相对较为吻合,在实际的现场流行病控制中数学模型的应用将为疫情的控制提供必要的帮助和参考意见。

关键词: 登革热, 数学模型, 暴发

Abstract:

Objective To establish a mathematical model of dengue fever based on the Newton model of the transmission of dengue fever and the SIR compartment for in-depth study of the epidemiological characteristics of imported dengue fever and of the effects of different control measures. Methods A model of the transmission of dengue fever, consistent with the actual situation of the dengue fever outbreak in Cixi city, Zhejiang province in 2004, was established to simulate and study the scenario. Results According to the model, the total mosquito density threshold per capita was 2.4. Thus, an epidemic outbreak of dengue fever would not be possibly avoided following import of pathogens unless the antibody level among the population was >67.8%. Conclusion The simulation results derived from the mathematical model was close to that of field investigation, which was particularly consistent with the mid-to late-period of the outbreak. Hence, the application of mathematical model may practically facilitate field control of epidemic diseases.

Key words: Dengue fever, Mathematical model, Outbreak

中图分类号: