[1] 宋晓, 程鹏, 王海防, 等. 鲁西南地区淡色库蚊抗药性评价[J]. 中国血吸虫病防治杂志, 2020, 32(1):69-72. DOI:10.16250/j.32.1374.2018261.Song X, Cheng P, Wang HF, et al. Study on insecticide resistance of Culex pipiens pallens in southwest region of Shandong province[J]. Chin J Schisto Control, 2020, 32(1):69-72. DOI:10.16250/j.32.1374.2018261. [2] 张咏梅, 王姝, 胡晓辉, 等. 天津市2013-2019年淡色库蚊对常用杀虫剂的抗药性监测分析[J]. 中国媒介生物学及控制杂志, 2020, 31(4):438-441. DOI:10.11853/j.issn.1003.8280.2020.04.012.Zhang YM, Wang S, Hu XH, et al. Surveillance and analysis of the resistance of Culex pipiens pallens to commonly used insecticides in Tianjin, China, 2013-2019[J]. Chin J Vector Biol Control, 2020, 31(4):438-441. DOI:10.11853/j.issn.1003.8280.2020.04.012. [3] Wang Y, Cheng P, Jiao BY, et al. Investigation of mosquito larval habitats and insecticide resistance in an area with a high incidence of mosquito-borne diseases in Jining, Shandong province[J]. PLoS One, 2020, 15(3):e0229764. DOI:10.1371/journal.pone.0229764. [4] Zhu F, Lavine L, O’Neal S, et al. Insecticide resistance and management strategies in urban ecosystems[J]. Insects, 2016, 7(1):2. DOI:10.3390/insects7010002. [5] Huang Y, Guo Q, Sun XH, et al. Culex pipiens pallens cuticular protein CPLCG5 participates in pyrethroid resistance by forming a rigid matrix[J]. Parasit Vectors, 2018, 11(1):6. DOI:10.1186/s13071-017-2567-9. [6] Vinson BS, Law PK. Cuticular composition and DDT resistance in the tobacco budworm[J]. J Econ Entomol, 1971, 64(6):1387-1390. DOI:10.1093/jee/64.6.1387. [7] 史琦琪. 淡色库蚊RNA-seq及CPGs与抗药性关系的研究[D]. 济南:济南大学, 2018.Shi QQ. Culex pipiens pallens RNA-seq and relationship study of CPGs among resistance[D]. Jixnan:University of Jinan, 2018. [8] 孙雅雯, 郑彬. 昆虫表皮与化学杀虫剂抗性机制关系的研究进展[J]. 中国病原生物学杂志, 2015, 10(11):1055-1056. DOI:10.13350/j.cjpb.151123.Sun YW, Zheng B. Advances in the study of the relationship between insect cuticle proteins and insecticide resistance[J]. J Pathog Biol, 2015, 10(11):1055-1056. DOI:10.13350/j.cjpb.151123. [9] He NJ, Botelho JMC, McNall RJ, et al. Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry[J]. Insect Biochem Mol Biol, 2007, 37(2):135-146. DOI:10.1016/j.ibmb.2006.10.011. [10] Vannini L, Willis JH. Localization of RR-1 and RR-2 cuticular proteins within the cuticle of Anopheles gambiae[J]. Arthropod Struct Dev, 2017, 46(1):13-29. DOI:10.1016/j.asd.2016.10.002. [11] Ioannidou ZS, Theodoropoulou MC, Papandreou NC, et al. CutProtFam-Pred:detection and classification of putative structural cuticular proteins from sequence alone, based on profile hidden Markov models[J]. Insect Biochem Mol Biol, 2014, 52:51-59. DOI:10.1016/j.ibmb.2014.06.004. [12] 邢丹. 中国尖音库蚊复合组分子系统学的研究[D]. 北京:中国人民解放军军事医学科学院, 2013.Xing D. Molecular systematic studies of Culex pipiens complex in China[D]. Beijing:Academy of Military Medical Sciences, 2013. [13] Rebers JE, Willis JH. A conserved domain in arthropod cuticular proteins binds chitin[J]. Insect Biochem Mol Biol, 2001, 31(11):1083-1093. DOI:10.1016/s0965-1748(01)00056-x. [14] Vaclaw MC, Sprouse PA, Dittmer NT, et al. Self-assembled coacervates of chitosan and an insect cuticle protein containing a Rebers-Riddiford motif[J]. Biomacromolecules, 2018, 19(7):2391-2400. DOI:10.1021/acs.biomac.7b01637. [15] Xu Y, Yang XS, Sun XH, et al. Transcription factor FTZ-F1 regulates mosquito cuticular protein CPLCG5 conferring resistance to pyrethroids in Culex pipiens pallens[J]. Parasit Vectors, 2020, 13(1):514. DOI:10.1186/s13071-020-04383-w. [16] Sun XL, Guo JX, Ye WY, et al. Cuticle genes CpCPR63 and CpCPR47 may confer resistance to deltamethrin in Culex pipiens pallens[J]. Parasitol Res, 2017, 116(8):2175-2179. DOI:10.1007/s00436-017-5521-z. [17] Balabanidou V, Kefi M, Aivaliotis M, et al. Mosquitoes cloak their legs to resist insecticides[J]. Proc R Soc B Biol Sci, 2019, 286(1907):20191091. DOI:10.1098/rspb.2019.1091. [18] Ma K, Li XX, Hu HX, et al. Pyrethroid-resistance is modulated by miR-92a by targeting CpCPR4 in Culex pipiens pallens[J]. Comp Biochem Physiol B Biochem Mol Biol, 2017, 203:20-24. DOI:10.1016/j.cbpb.2016.09.002. |