[1] Ellis JE,Missan DS,Shabilla M,et al. Rapid infectious disease identification by next-generation DNA sequencing[J]. J Microbiol Methods,2017,138:12-19. DOI:10.1016/j.mimet. 2016.09.012. [2] Lefterova MI,Suarez CJ,Banaei N,et al. Next-generation sequencing for infectious disease diagnosis and management:a report of the association for molecular pathology[J]. J Mol Diagn,2015,17(6):623-634. DOI:10.1016/j.jmoldx.2015. 07.004. [3] Cheng J,Hu H,Kang Y,et al. Identification of pathogens in culture-negative infective endocarditis cases by metagenomic analysis[J]. Ann Clin Microbiol Antimicrob,2018,17(1):43. DOI:10.1186/s12941-018-0294-5. [4] Gu W,Miller S,Chiu CY. Clinical metagenomic next generation sequencing for pathogen detection[J]. Annu Rev Pathol Mechan Dis,2019,14:319-338. DOI:10.1146/annurev-pathmechdis-012418-012751. [5] Van Dijk EL,Jaszczyszyn Y,Naquin D,et al. The third revolution in sequencing technology[J]. Trends Genet,2018,34(9):666-681. DOI:10.1016/j.tig.2018.05.008. [6] Ameur A,Kloosterman WP,Hestand MS. Single-molecule sequencing:towards clinical applications[J]. Trends Biotechnol,2019,37(1):72-85. DOI:10.1016/j.tibtech.2018.07.013. [7] Magi A,Semeraro R,Mingrino A,et al. Nanopore sequencing data analysis:state of the art,applications and challenges[J]. Brief Bioinform,2018,19(6):1256-1272. DOI:10.1093/bib/bbx062. [8] Feng YX,Zhang YC,Ying CF,et al. Nanopore-based fourth-generation DNA sequencing technology[J]. Genomics Proteomics Bioinformatics,2015,13(1):4-16. DOI:10.1016/j.gpb.2015. 01.009. [9] Lu HY,Giordano F,Ning ZM. Oxford nanopore MinION sequencing and genome assembly[J]. Genomics Proteomics Bioinformatics,2016,14(5):265-279. DOI:10.1016/j.gpb.2016.05.004. [10] 乌日拉嘎,徐海燕,冯淑贞,等. 测序技术的研究进展及三代测序的应用[J]. 中国乳品工业,2016,44(4):33-37. DOI:10.3969/j.issn.1001-2230.2016.04.009. Wurilag,Xu HY,Feng SZ,et al. Research progress of sequencing technologies and the application of third generation sequencing[J]. China Dairy Ind,2016,44(4):33-37. DOI:10.3969/j.issn.1001-2230.2016.04.009. [11] Leggett RM,Clark MD. A world of opportunities with nanopore sequencing[J]. J Exp Bot,2017,68(20):5419-5429. DOI:10.1093/jxb/erx289. [12] de Lannoy C,de Ridder D,Risse J. The long reads ahead:de novo genome assembly using the MinION[J]. F1000Res,2017,6:1083. DOI:10.12688/f1000research.12012.2. [13] Madoui MA,Engelen S,Cruaud C,et al. Genome assembly using Nanopore-guided long and error-free DNA reads[J]. BMC Genomics,2015,16(1):327. DOI:10.1186/s12864-015-1519-z. [14] Clarke J,Wu HC,Jayasinghe L,et al. Continuous base identification for single-molecule nanopore DNA sequencing[J]. Nat Nanotechnol,2009,4(4):265-270. DOI:10.1038/nnano. 2009.12. [15] Jain M,Koren S,Miga KH,et al. Nanopore sequencing and assembly of a human genome with ultra-long reads[J]. Nat Biotechnol,2018,36(4):338-345. DOI:10.1038/nbt.4060. [16] Sanderson ND,Street TL,Foster D,et al. Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices[J]. BMC Genomics,2018,19(1):714. DOI:10.1186/s12864-018-5094-y. [17] Houldcroft CJ,Beale MA,Breuer J. Clinical and biological insights from viral genome sequencing[J]. Nat Rev Microbiol,2017,15(3):183-192. DOI:10.1038/nrmicro.2016.182. [18] Hoenen T,Groseth A,Rosenke K,et al. Nanopore sequencing as a rapidly deployable Ebola outbreak tool[J]. Emerg Infect Dis,2016,22(2):331-334. DOI:10.3201/eid2202.151796. [19] Quick J,Loman NJ,Duraffour S,et al. Real-time,portable genome sequencing for Ebola surveillance[J]. Nature,2016,530(7589):228-232. DOI:10.1038/nature16996. [20] Faria NR,Quick J,Claro IM,et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas[J]. Nature,2017,546(7658):406-410. DOI:10.1038/nature22401. [21] Faria NR,Sabino EC,Nunes MR,et al. Mobile real-time surveillance of Zika virus in Brazil[J]. Genome Med,2016,8(1):97. DOI:10.1186/s13073-016-0356-2. [22] Menegon M,Cantaloni C,Rodriguez-Prieto A,et al. On site DNA barcoding by nanopore sequencing[J]. PLoS One,2017,12(10):e0184741. DOI:10.1371/journal.pone.0184741. [23] Johnson SS,Zaikova E,Goerlitz DS,et al. Real-time DNA sequencing in the antarctic dry valleys using the Oxford Nanopore sequencer[J]. J Biomol Tech,2017,28(1):2-7. DOI:10.7171/jbt.17-2801-009. [24] Castro-Wallace SL,Chiu CY,John KK,et al. Nanopore DNA sequencing and genome assembly on the international space station[J]. Sci Rep,2017,7(1):18022. DOI:10.1038/s41598-017-18364-0. [25] Edwards A,Debbonaire AR,Sattler B,et al. Extreme metagenomics using nanopore DNA sequencing:a field report from Svalbard,78°N[J]. BioRxiv,2016,073965. DOI:10.1101/073965. [26] Rhodes J,Abdolrasouli A,Farrer RA,et al. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris[J]. Emerg Microbes Infec,2018,7(1):43. DOI:10.1038/s41426-018-0045-x. [27] 许亚昆,马越,胡小茜,等. 基于三代测序技术的微生物组学研究进展[J]. 生物多样性,2019,27(5):534-542. DOI:10.17520/biods.2018201. Xu YK,Ma Y,Hu XQ,et al. Analysis of prospective microbiology research using third-generation sequencing technology[J]. Biod Sci,2019,27(5):534-542. DOI:10.17520/biods.2018201. [28] 叶福强,张锦海,汪春晖. 纳米孔测序技术在病原体现场快速确认中的应用与挑战[J]. 中华卫生杀虫药械,2019,25(4):374-378. DOI:10.19821/j.1671-2781.2019.04.021. Ye FQ,Zhang JH,Wang CH,et al. Application and challenge of nanopore sequencing technology in rapid identification of pathogens in the field[J]. Chin J Hyg Insect Equip,2019,25(4):374-378. DOI:10.19821/j.1671-2781.2019.04.021. [29] Timokratis K,Harrison I,Piorkowska R,et al. De novo assembly of human Herpes virus Type 1(HHV-1) genome,mining of non-canonical structures and detection of novel drug-resistance mutations using short- and long-read next generation sequencing technologies[J]. PLoS One,2016,11(6):e0157600. DOI:10.1371/journal.pone.0157600. [30] Imai K,Tamura K,Tanigaki T,et al. Whole genome sequencing of Influenza A and B viruses with the MinION sequencer in the clinical setting:a pilot study[J]. Front Microbiol,2018,9:2748. DOI:10.3389/fmicb.2018.02748. [31] Xu YF,Lewandowski K,Lumley S,et al. Detection of viral pathogens with multiplex nanopore MinION sequencing:be careful with cross-talk[J]. Front Microbiol,2018,9:2225. DOI:10.3389/fmicb.2018.02225. [32] Wang J,Ke YH,Zhang Y,et al. Rapid and accurate sequencing of enterovirus genomes using MinION nanopore sequencer[J]. Biomed Environ Sci,2017,30(10):718-726. DOI:10.3967/bes2017.097. [33] Votintseva AA,Bradley P,Pankhurst L,et al. Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples[J]. J Clin Microbiol,2017,55(5):1285-1298. DOI:10.1128/JCM. 02483-16. [34] Alejo A,Matamoros T,Guerra M,et al. A proteomic atlas of the African swine fever virus particle[J]. J Virol,2018,92(23):e01293-18. DOI:10.1128/JVI.01293-18. [35] Batovska J,Lynch SE,Rodoni BC,et al. Metagenomic arbovirus detection using MinION nanopore sequencing[J]. J Virol Methods,2017,249:79-84. DOI:10.1016/j.jviromet.2017.08. 019. [36] Russell JA,Campos B,Stone J,et al. Unbiased strain-typing of arbovirus directly from mosquitoes using nanopore sequencing:a field-forward biosurveillance protocol[J]. Sci Rep,2018,8(1):5417. DOI:10.1038/s41598-018-23641-7. [37] Kafetzopoulou LE,Efthymiadis K,Lewandowski K,et al. Assessment of metagenomic Nanopore and Illumina sequencing for recovering whole genome sequences of chikungunya and dengue viruses directly from clinical samples[J]. Euro Surveill,2018,23(50):1800228. DOI:10.2807/1560-7917.ES.2018. 23.50.1800228. [38] Hansen S,Dill V,Shalaby MA,et al. Serotyping of foot- and-mouth disease virus using Oxford nanopore sequencing[J]. J Virol Methods,2019,263:50-53. DOI:10.1016/j.jviromet.2018.10.020. [39] Kafetzopoulou LE,Pullan ST,Lemey P,et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak[J]. Science,2019,363(6422):74-77. DOI:10.1126/science.aau9343. [40] KilIanski A,Roth PA,Liem AT,et al. Use of Unamplified RNA/cDNA-Hybrid nanopore sequencing for rapid detection and characterization of RNA viruses[J]. Emerg Infect Dis,2016,22(8):1448-1451. DOI:10.3201/eid2208.160270. [41] Greninger AL,Naccache SN,Federman S,et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis[J]. Genome Med,2015,7(1):99. DOI:10.1186/s13073-015-0220-9. [42] Charalampous T,Kay GL,Richardson H,et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection[J]. Nat Biotechnol,2019,37(7):783-792. DOI:10.1038/s41587-019-0156-5. [43] Hall RJ,Draper JL,Nielsen FGG,et al. Beyond research:a primer for considerations on using viral metagenomics in the field and clinic[J]. Front Microbiol,2015,6:224. DOI:10.3389/fmicb.2015.00224. [44] Cuscó A,Catozzi C,Viñes J,et al. Microbiota profiling with long amplicons using Nanopore sequencing:full-length 16S rRNA gene and whole rrn operon[J]. F1000Res,2018,7:1755. DOI:10.12688/f1000research.16817.2. [45] Smith AM,Jain M,Mulroney L,et al. Reading canonical and modified nucleotides in 16S ribosomal RNA using nanopore direct RNA sequencing[J]. BioRxiv,2017. DOI:10.1101/132274. [46] Leggett RM,Alcon-Giner C,Heavens D,et al. Rapid MinION profiling of preterm microbiota and antimicrobial-resistant pathogens[J]. Nat Microbiol,2020,5(3):430-442. DOI:10.1038/s41564-019-0626-z. [47] Vasudevan K,Ragupathi NKD,Jacob JJ,et al. Highly accurate-single chromosomal complete genomes using IonTorrent and MinION sequencing of clinical pathogens[J]. Genomics,2020,112(1):545-551. DOI:10.1016/j.ygeno.2019.04.006. |