[1] Xia XF,Sun BT,Gurr GM,et al. Gut microbiota mediate insecticide resistance in the diamondback moth,Plutella xylostella (L.)[J]. Front Microbiol,2018,9:25. DOI:10.3389/fmicb.2018.00025. [2] Denholm I,Devine GJ,Williamson MS. Insecticide resistance on the move[J]. Science,2002,297(5590):2222-2223. DOI:10.1126/science.1077266. [3] Dang K,Doggett SL,Veera Singham G,et al. Insecticide resistance and resistance mechanisms in bed bugs,Cimex spp. (Hemiptera:Cimicidae)[J]. Parasit Vectors,2017,10(1):318. DOI:10.1186/s13071-017-2232-3. [4] Ishak IH,Kamgang B,Ibrahim SS,et al. Pyrethroid resistance in malaysian populations of dengue vector Aedes aegypti is mediated by CYP9 family of cytochrome P450 genes[J]. PLoS Negl Trop Dis,2017,11(1):e0005302. DOI:10.1371/journal.pntd.0005302. [5] Gong YH,Li T,Feng YC,et al. The function of two P450s,CYP9M10 and CYP6AA7,in the permethrin resistance of Culex quinquefasciatus[J]. Sci Rep,2017,7(1):587. DOI:10.1038/s41598-017-00486-0. [6] Li XC,Schuler MA,Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics[J]. Annu Rev Entomol,2007,52:231-253. DOI:10.1146/annurev.ento.51.110104.151104. [7] Itokawa K,Komagata O,Kasai S,et al. A single nucleotide change in a core promoter is involved in the progressive overexpression of the duplicated CYP9M10 haplotype lineage in Culex quinquefasciatus[J]. Insect Biochem Mol Biol,2015,66:96-102. DOI:10.1016/j.ibmb.2015.10.006. [8] Ibrahim SS,Riveron JM,Bibby J,et al. Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector[J]. PLoS Genet,2015,11(10):e1005618. DOI:10.1371/journal.pgen.1005618. [9] Pridgeon JW,Zhang L,Liu NN. Overexpression of CYP4G19 associated with a pyrethroid-resistant strain of the German cockroach,Blattella germanica (L.)[J]. Gene,2003,314:157-163. DOI:10.1016/S0378-1119(03)00725-X. [10] Barnes KG,Irving H,Chiumia M,et al. Restriction to gene flow is associated with changes in the molecular basis of pyrethroid resistance in the malaria vector Anopheles funestus[J]. Proc Natl Acad Sci USA,2017,114(2):286-291. DOI:10.1073/pnas. 1615458114. [11] Yahouédo GA,Chandre F,Rossignol M,et al. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae[J]. Sci Rep,2017,7(1):11091. DOI:10.1038/s41598-017-11357-z. [12] Goindin D,Delannay C,Gelasse A,et al. Levels of insecticide resistance to deltamethrin,malathion,and temephos,and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies)[J]. Infect Dis Poverty,2017,6:38. DOI:10.1186/s40249-017-0254-x. [13] Lv Y,Wang WJ,Hong SC,et al. Comparative transcriptome analyses of deltamethrin-susceptible and-resistant Culex pipiens pallens by RNA-seq[J]. Mol Genet Genomics,2016,291(1):309-321. DOI:10.1007/s00438-015-1109-4. [14] Kasai S,Komagata O,Itokawa K,et al. Mechanisms of pyrethroid resistance in the dengue mosquito vector,Aedes aegypti:target site insensitivity,penetration,and metabolism[J]. PLoS Negl Trop Dis,2014,8(6):e2948. DOI:10.1371/journal.pntd. 0002948. [15] Itokawa K,Komagata O,Kasai S,et al. Testing the causality between CYP9M10 and pyrethroid resistance using the TALEN and CRISPR/Cas9 technologies[J]. Sci Rep,2016,6:24652. DOI:10.1038/srep24652. [16] Nardini L,Hunt RH,Dahan-Moss YL,et al. Malaria vectors in the Democratic Republic of the Congo:the mechanisms that confer insecticide resistance in Anopheles gambiae and Anopheles funestus[J]. Malar J,2017,16(1):448. DOI:10. 1186/s12936-017-2099-y. [17] Højland DH,Kristensen M. Analysis of differentially expressed genes related to resistance in spinosad-and neonicotinoid-resistant Musca domestica L. (Diptera:Muscidae) strains[J]. PLoS One,2017,12(1):e0170935. DOI:10.1371/journal.pone. 0170935. [18] Jing TX,Wu YX,Li T,et al. Identification and expression profiles of fifteen delta-class glutathione S-transferase genes from a stored-product pest,Liposcelis entomophila (Enderlein) (Psocoptera:Liposcelididae)[J]. Comp Biochem Physiol B Biochem Mol Biol,2017,206:35-41. DOI:10.1016/j.cbpb. 2017.01.008. [19] Mitchell SN,Rigden DJ,Dowd AJ,et al. Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae[J]. PLoS One,2014,9(3):e92662. DOI:10.1371/journal.pone.0092662. [20] Hu F,Dou W,Wang JJ,et al. Multiple glutathione S-transferase genes:identification and expression in oriental fruit fly,Bactrocera dorsalis[J]. Pest Manag Sci,2014,70(2):295-303. DOI:10.1002/ps.3558. [21] Djègbè I,Agossa FR,Jones CM,et al. Molecular characterization of DDT resistance in Anopheles gambiae from Benin[J]. Parasit Vectors,2014,7:409. DOI:10.1186/1756-3305-7-409. [22] Aravindan V,Muthukumaravel S,Gunasekaran K. Interaction affinity of Delta and Epsilon class glutathione-s-transferases (GSTs) to bind with DDT for detoxification and conferring resistance in Anopheles gambiae,a malaria vector[J]. J Vector Borne Dis,2014,51(1):8-15. [23] Riveron JM,Yunta C,Ibrahim SS,et al. A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector[J]. Genome Biol,2014,15(2):R27. DOI:10.1186/gb-2014-15-2-r27. [24] Carmbell PM,Newcomb RD,Russell RJ,et al. Two different amino acid substitutions in the ali-esterase,E3,confer alternative types of organophosphorus insecticide resistance in the sheep blowfly,Lucilia cuprina[J]. Insect Biochem Mol Biol,1998,28(3):139-150. [25] Shen XM,Liao CY,Lu XP,et al. Involvement of three esterase genes from Panonychus citri (McGregor) in fenpropathrin resistance[J]. Int J Mol Sci,2016,17(8):1361. DOI:10.3390/ijms17081361. [26] Grigoraki L,Lagnel J,Kioulos I,et al. Transcriptome profiling and genetic study reveal amplified carboxylesterase genes implicated in temephos resistance,in the asian tiger mosquito Aedes albopictus[J]. PLoS Negl Trop Dis,2015,9(5):e0003771. DOI:10.1371/journal.pntd.0003771. [27] Grigoraki L,Pipini D,Labbé P,et al. Carboxylesterase gene amplifications associated with insecticide resistance in Aedes albopictus:geographical distribution and evolutionary origin[J]. PLoS Negl Trop Dis,2017,11(4):e0005533. DOI:10.1371/journal.pntd.0005533. [28] Wang LL,Lu XP,Meng LW,et al. Functional characterization of an α-esterase gene involving malathion detoxification in Bactrocera dorsalis(Hendel)[J]. Pestic Biochem Physiol,2016,130:44-51. DOI:10.1016/j.pestbp.2015.12.001. [29] de Carvalho RA,Torres TT,de Azeredo-Espin AM. A survey of mutations in the Cochliomyia hominivorax (Diptera:Calliphoridae) esterase E3 gene associated with organophosphate resistance and the molecular identification of mutant alleles[J]. Vet Parasitol,2006,140(3/4):344-351. DOI:10.1016/j.vetpar.2006.04.010. [30] Smissaert HR. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate[J]. Science,1964,143(3602):129-131. DOI:10.1126/science.143.3602.129. [31] Feng XY,Yang C,Yang YC,et al. Distribution and frequency of G119S mutation in ace-1 gene within Anopheles sinensis populations from Guangxi,China[J]. Malar J,2015,14:470. DOI:10.1186/s12936-015-1000-0. [32] Guo DH,Luo JP,Zhou YN,et al. ACE:an efficient and sensitive tool to detect insecticide resistance-associated mutations in insect acetylcholinesterase from RNA-Seq data[J]. BMC Bioinform,2017,18:330. DOI:10.1186/s12859-017-1741-6. [33] Walsh SB,Dolden TA,Moores GD,et al. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance[J]. Biochem J,2001,359(Pt 1):175-181. DOI:10.1042/bj3590175. [34] Zhao MH,Dong YD,Ran X,et al. Point mutations associated with organophosphate and carbamate resistance in Chinese strains of Culex pipiens quinquefasciatus (Diptera:Culicidae)[J]. PLoS One,2014,9(5):e95260. DOI:10.1371/journal.pone.0095260. [35] Zoh DD,Ahoua Alou LP,Toure M,et al. The current insecticide resistance status of Anopheles gambiae (s.l.) (Culicidae) in rural and urban areas of Bouaké,Côte d'Ivoire[J]. Parasit Vectors,2018,11:118. DOI:10.1186/s13071-018-2702-2. [36] Ismail BA,Kafy HT,Sulieman JE,et al. Temporal and spatial trends in insecticide resistance in Anopheles arabiensis in Sudan:outcomes from an evaluation of implications of insecticide resistance for malaria vector control[J]. Parasit Vectors,2018,11:122. DOI:10.1186/s13071-018-2732-9. [37] Sun H,Tong KP,Kasai S,et al. Overcoming super-knock down resistance (super-kdr) mediated resistance:multi-halogenated benzyl pyrethroids are more toxic to super-kdr than kdr house flies[J]. Insect Mol Biol,2016,25(2):126-137. DOI:10.1111/imb.12206. [38] Scott JG. Evolution of resistance to pyrethroid insecticides in Musca domestica[J]. Pest Manag Sci,2017,73(4):716-722. DOI:10.1002/ps.4328. [39] Kasai S,Sun H,Scott JG. Diversity of knockdown resistance alleles in a single house fly population facilitates adaptation to pyrethroid insecticides[J]. Insect Mol Biol,2017,26(1):13-24. DOI:10.1111/imb.12267. [40] Gomes B,Purkait B,Deb RM,et al. Knockdown resistance mutations predict DDT resistance and pyrethroid tolerance in the visceral leishmaniasis vector Phlebotomus argentipes[J]. PLoS Negl Trop Dis,2017,11(4):e0005504. DOI:10.1371/journal.pntd.0005504. [41] Firooziyan S,Sadaghianifar A,Taghilou B,et al. Identification of novel voltage-gated sodium channel mutations in human head and body lice (Phthiraptera:Pediculidae)[J]. J Med Entomol,2017,54(5):1337-1343. DOI:10.1093/jme/tjx107. [42] Yellapu NK,Gopal J,Kasinathan G,et al. Molecular modelling studies of kdr mutations in voltage gated sodium channel revealed significant conformational variations contributing to insecticide resistance[J]. J Biomol Struct Dyn,2018,36(8):2058-2069. DOI:10.1080/07391102.2017.1341338. [43] Silva Martins WF,Wilding CS,Steen K,et al. Local selection in the presence of high levels of gene flow:evidence of heterogeneous insecticide selection pressure across Ugandan Culex quinquefasciatus populations[J]. PLoS Negl Trop Dis,2017,11(10):e0005917. DOI:10.1371/journal.pntd.0005917. [44] Al Nazawi AM,Aqili J,Alzahrani M,et al. Combined target site (kdr) mutations play a primary role in highly pyrethroid resistant phenotypes of Aedes aegypti from Saudi Arabia[J]. Parasit Vectors,2017,10:161. DOI:10.1186/s13071-017-2096-6. [45] Sayono S,Hidayati APN,Fahri S,et al. Distribution of voltage-gated sodium channel (Nav) alleles among the Aedes aegypti populations in central java province and its association with resistance to pyrethroid insecticides[J]. PLoS One,2016,11(3):e0150577. DOI:10.1371/journal.pone.0150577. [46] Plernsub S,Saingamsook J,Yanola J,et al. Temporal frequency of knockdown resistance mutations,F1534C and V1016G,in Aedes aegypti in Chiang Mai city,Thailand and the impact of the mutations on the efficiency of thermal fogging spray with pyrethroids[J]. Acta Trop,2016,162:125-132. DOI:10.1016/j.actatropica.2016.06.019. [47] Buckingham SD,Ihara M,Sattelle DB,et al. Mechanisms of action,resistance and toxicity of insecticides targeting GABA receptors[J]. Curr Med Chem,2017,24(27):2935-2945. DOI:10.2174/0929867324666170613075736. [48] Garrood WT,Zimmer CT,Gutbrod O,et al. Influence of the RDL A301S mutation in the brown planthopper Nilaparvata lugens on the activity of phenylpyrazole insecticides[J]. Pestic Biochem Physiol,2017,142:1-8. DOI:10.1016/j.pestbp.2017.01.007. [49] Ffrench-Constant RH,Steichen JC,Rocheleau TA,et al. A single-amino acid substitution in a gamma-aminobutyric acid subtype A receptor locus is associated with cyclodiene insecticide resistance in Drosophila populations[J]. Proc Natl Acad Sci USA,1993,90(5):1957-1961. DOI:10.1073/pnas.90.5.1957. [50] Low VL,Vinnie-Siow WY,Lim YAL,et al. First molecular genotyping of A302S mutation in the gamma aminobutyric acid (GABA) receptor in Aedes albopictus from Malaysia[J]. Trop Biomed,2015,32(3):554-556. [51] Taylor-Wells J,Brooke BD,Bermudez I,et al. The neonicotinoid imidacloprid,and the pyrethroid deltamethrin,are antagonists of the insect Rdl GABA receptor[J]. J Neurochem,2015,135(4):705-713. DOI:10.1111/jnc.13290. |