中国媒介生物学及控制杂志 ›› 2017, Vol. 28 ›› Issue (4): 340-342.DOI: 10.11853/j.issn.1003.8280.2017.04.008

• 论著 • 上一篇    下一篇

深圳市2014年登革热疫情时空分析

许艳子1, 吴楠1, 张振2, 王敬忠2   

  1. 1 深圳市南山区疾病预防控制中心传染病防制科, 广东 深圳 518054;
    2 深圳市疾病预防控制中心, 广东 深圳 518055
  • 收稿日期:2017-04-25 出版日期:2017-08-20 发布日期:2017-08-20
  • 通讯作者: 王敬忠,Email:wnwunan@163.com
  • 作者简介:许艳子,女,主治医师,从事传染病防制工作,Email:422402339@qq.com
  • 基金资助:

    广东省医学科学技术研究基金(A2015449)

Spatial-temporal analysis of dengue fever in Shenzhen,China,2014

XU Yan-zi1, WU Nan1, ZHANG Zhen2, WANG Jing-zhong2   

  1. 1 Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong Province, China;
    2 Shenzhen Center for Disease Control and Prevention
  • Received:2017-04-25 Online:2017-08-20 Published:2017-08-20
  • Supported by:

    Supported by the Medical Scientific Research Foundation of Guangdong Province (No. A2015449)

摘要:

目的 分析2014年深圳市登革热疫情时空分布特征。方法 基于2014年深圳市登革热本地病例数据和人口数据,建立地理信息数据库,采用ArcGIS 10.2和SaTScan软件进行全局、局部空间自相关分析及时空扫描聚类分析,确定登革热时空热点区域。结果 2014年深圳市登革热本地病例高发于9、10月,本地病例高聚集区在深圳市西南区域,聚集中心为深圳市蛇口、招商和粤海街道(对数似然比为44.46,相对危险度为7.30,P<0.001)。结论 登革热疫情存在明显的时空聚集特征,为制定登革热防控策略和评价防制效果提供了参考。

关键词: 登革热, 空间自相关, 时空聚类分析

Abstract:

Objective To understand the spatial-temporal distribution of dengue fever epidemics in Shenzhen city, 2014. Methods Geographic information database was established by using the incidence data of dengue fever and demographic data reported. Global indication of spatial autocorrelation, local indication of spatial autocorrelation, and spatial-temporal clustering analysis were conducted with software ArcGIS 10.2 and SaTScan to determine high risk areas of dengue fever. Results The occurrence of local cases had a characteristic of seasonality, mainly occurred in September and October. The spatial aggregation of dengue fever was obvious in Shenzhen city, 2014. The spatial-temporal clustering analysis showed that the most likely clustering was mainly at Southwest districts of Shenzhen city, such as Shekou, Zhaoshang, and Yuehai counties (LLR=44.46, RR=7.30, P<0.001). Conclusion Obvious spatial-temporal clustering of dengue fever distribution was found in Shenzhen city, Attention should be paid to the hot spots in monitoring and early warning to mitigate the transmission.

Key words: Dengue fever, Spatial autocorrelation, Spatial-temporal clustering analysis

中图分类号: